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Transmission of stimulus-locked responses in two coupled phase oscillators
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A model of twon:m coupled phase oscillators is studied, where both oscillators are subject to random
forces, but only one oscillator is repetitively stimulated with a pulsatile stimulus. The focus of the paper is on
transmission of transient responses as well as transient synchronization and desynchronization, which are
stimulus locked, i.e., tightly time locked to the stimulus. A bistability or multistability of stable synchronized
states of the two-phase oscillatgrsodulo 2r) occurs due to tha: m coupling. Accordingly, after stimulation
the two oscillators may tend to qualitatively different stable states, which leads to a crog€aksponse
clustering(i.e., a switching between qualitatively different poststimulus responses acrogsafiaither one of
the oscillators or both. A stochastic CT phase resetting analysis allows one to detect such transient responses
and provides a reliable estimation of the transmission time. In contrast, CT avel@ag&@ging over an
ensemble of response<T standard deviation, and CT cross correlation fail in studying the transmission of
such stimulus-locked responses, even in the simpler case of 1:1 coupling. In particular, even though being used
as golden standard for the analysis of evoked responses in medicine and neuroscience, CT averaging typically
causes severe artifacts and misinterpretations.
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I. INTRODUCTION guency spectrum of evoked responses. For instance, in the
. . . I . context of self-organized motor control procesgEd, simi-

The impact of .st|mulat|on.on osu!laﬂons and syn_chronl-lar experiments led to contradictory estimates of conven-
zation processes is of great interest in phy$idschemistry  iqna| power spectra of transient responges-15. It was
[2], biology [3-9], neuroscience, and medicii6—9). The g ggested that these discrepancies might be due to artifacts
study of transient reactions of neuronal oscillations to pU|Saarising when simple power spectra are calculated for tran-
tile stimuli is a major approach in neuroscience and a wellsjent response$l4]. In contrast, more sophisticated ap-
established tool for clinical diagnos[i6,7]. The golden stan- proaches to spectral estimation and denoising of transient
dard for the univariate analysis of responses of neuronalesponses are based on autoregressive moving average mod-
oscillations to pulsatile stimuli as measured with electroenels [16], on the Wiener filte{17-2(, and on the wavelet
cephalography(EEG), magnetoencephalograpiiEG) or  transform[21-25.
local field potentialgLFP) is cross-trial averaging, i.e., av- Another fundamental issue of evoked responses is the es-
eraging over an ensemble of poststimulus responsetgmation of their latencies. To study neural information pro-
[6,10,11. Thecross-trial (CT) averaged signaif the signal  cessing and, in particular, the flow of information in interact-
x; of the jth oscillator reads ing neural populations, it is important to analyze the

| transmission of stimulus-locked responses within networks

_ 1 of interacting neural populations. Along the lines of the av-
xj(t) = TE Xj(7c+1), 1) eraging approach, transmission is assessed by identifying the
k=1 timing sequence of stimulus-locked responses of different

where the stimulus is repetitively administered alifferent ~ neuronal populations. This is typically done by determining
onset timesr,, 7, ...,7. The assumption behind the trig- the difference in time between the occurrence of marker

gered averaging is that the response&an be decomposed events(such as maxima_ or mini_rr)leof the individual aver-
into a stereotypical evoked responge which follows the aged responses belonging to different neuronal populations

stimulus with a constant delay, plus additive Gaussian nois€®:10.13. , . L
&, so that However, the averaging assumption from E2). is vio-

lated by stimulated brain activity for several reasons.
Xj(1c+1) = g(t) + &(nc+1) (2 (i) Ongoing oscillations are abundant in the br§26].
is fulfilled [10,17. In this case averaging improves the Such oscillators are not “silent” during the prestimulus pe-

signal-to-noise ratio bydT, where the number of respondes r|od.._ : .
. — (i) Evoked responses, detected with CT averaging, result
typically equa!s 20-300, anxj(t)—>ej(t)_ for_I—>oc (10,11 . from reorganizing part of such ongoing oscillations, espe-
The analy§|s of e_voked responses is still a matter Qf V'V'd!cially by resetting their phase dynamigJ].
debate. One issue is the estimation of the time varying fre- (i) Noise is inevitably inherent in neuronal action and,
hence, cannot be modeled appropriately by simply adding it
to the deterministic signdR7].
*Email address: p.tass@fz-juelich.de (iv) Coupled phase oscillators, subject to pulsatile stimu-
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lation and noise, may display an antiphase CT response clustimulus is phase dependg®,5]. Switching on and off the
tering, occurring after a stereotypical re$28—3Q. CT re-  stimulus of oscillator 1 is modeled by

sponse clustering means that the oscillators switch between . . .
X(t) = {1 stimulus is on at time

qualitatively different responses across trials. In a recent _
0 stimulus is off at time

MEG study it has been shown that simple visual stimuli

make neuronal populations generate a late antiphase CT re; . . .

sponse clusterinl?g gfter an egrly stereotypical r{a:gla]t The ‘T’he random_forceﬁ andF, aﬂi Gaussian wh|te noise ful-

antiphase CT response clustering cannot be detected with Cﬁfll.ng <Fi(t),>_o and<Fi(t)Fk®>_Dﬁik5(t:0 with constant

averaging as defined by E@.), but with a CT analysis based N°is€ amplitudeD. Equations(3) and (4) may serve as a

on stochastic phase resettitage Sec. I\ rmmmal model for two neurqnﬁ], one of them bemg ele(_:-
Accordingly, stimulated neuronal oscillations share basidfcally stimulated, or as a minimal model for two interacting

dynamical features with stimulated phase oscillaiiy ~ N€uronal populations, where only one of them is directly

more details, see Sec. IV)AThis paper is dedicated to study &€cted by a sensory stimulus as discussed below. The am-

transmission of stimulus-locked responses in two couple(ﬂ’“tUde, of both oscnlgtors is set equal to 1, so that the signal

phase oscillators, with only one oscillator being stimulated ©f the jth phase oscillator reads

The motivation behind this approach is to investigate dy- x:(t) = cos ¢;(t). (7)

namical processes, which are essential for neuronal informa- ! !

tion processing, in a reasonably simple oscillator model. The

insights into the transmission dynamics can then be used for B. Spontaneous dynamics

the analysis of experimental data. This approach is intended

to make the analysis of evoked response signals less spec(%'c'curring spontaneously, i.e., without stimulation. For this |

lative. A ; . i
In this paper transient dynamical processes will be pre:‘:'eo(_0 In Eq.(3)- The evolution equation of the:m phase

sented. It will be explained how they can be detected reliabl)gjlfference

with the CT stochastic phase resetting analySisc. ). In D, =Ny — Mifsy (8)
contrast, when applied to study transmission of stimulus-
locked responses, the golden standard for such analysis [§2dS
medicine and neuroscience, the CT averaging from([Ey. : .
fails massively. This underlines the importgncge of us(lﬂ;_g ap- Pom= 7y~ (N+ MK sin(@qp,+ 6) +F(), ©)
propriate data analysis techniques as described in Sec. lll.where vy is the detuning from Eq(5). The random force
F(t)=nFi(t)—mFx(t) is Gaussian white noise fulfilling
(F(t))=0 and(F(t)F{@))=(n*+n?)D &(t-1).

In the noise-free cag® =0) the dynamics is governed by

(6)

Let me dwell on the oscillators’ synchronization behavior

Il. STOCHASTIC MODEL

A. Two phase oscillators a potential
| consider a model of two phase oscillators with phases P m
1, i, and constant amplitudes obeying V(P m) = ‘J G(§)d¢, (10
C

Ja= o= K sin(ngy = myy + 6) + XOS() + Fy(D), (3)  Where G(@nm =y=(n+mK sin(®yp+6), andc is a con-
stant, so that

_ V(P
dd,m
The eigenfrequencies; and w, fulfill With suitably choser one gets
V(q)n,m) == '}’(Dn,m_ (n+mK COS{@n,m"' 6). (12

For |nw;—mw,| < (n+m)K the potentialV has a local maxi-
mum and a local minimum, which correspond to an unstable
ixed point of®, , and a stable fixed point ¢b,, ,,, denoted

l;[/z = (,()2 - K S|n(mlp2 - n¢1 - 0) + Fz(t) . (4) ci)n,m: (11)

Nw;— Mwy =y (5)

with detuningvy. K is a positive coupling constant, and the

coupling is chosen to be symmetrical, i.e., both oscillator D qos velv. Maxi d mini
are coupled to each other with equal strength. All of the®y ®nm and®y, respectively. Maximum and minimum are

phenomena and mechanisms presented in this paper occqjgtermined by settingV/d®,»=0, which with Eg.(5)

also in the case of nonidentical coupling strength, providec}"eIdS
oscillator 2 is coupled to oscillator 1; otherwise the dynami- Nwy — M,
cal phenomena studied below cannot be transmitted from ‘bﬁj;:arcsmm -0, (13

oscillator 1 to oscillator 2. Only oscillator 1 is stimulated,
where the stimulus is modeled by amperiodic, time- where one of the two solutions of the arcsin belongs to the
independent functiors(;) =S(y;+2m). In several fields of unstable fixed point and the other one to the stable fixed
the natural sciences, especially in biology, the effect of goint. The dynamics given by Eqll) corresponds to an
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overdamped motion of a particle in the potential @, onset of stimulus £ onset of stimulus k+1
moves in such a way that it minimized®, ), and ®, of oscillator 1 of oscillator 1
stops only wherdV/d®, , vanishegsee Ref[1] and Chap. (@) !
 ith respen 7 4 VAWAIAN '
With respect to the stable synchronized state, there is an & _?WWVWW . . JVWWM
important difference between 1:1 coupling andm cou- (b) 140 145 150 155
pling (with n# 1 and/orm# 1 andn# m): In case of the 1:1 !
coupling®$ , belongs to one stable solution of the phages 8 _?W . \ V\W
and ¢, (modulo 27). In contrast, withn:m coupling dbf]’m ©) 140 145 150 185
corresponds to more than only one stable solution of the - 1f ]
phasesy; and ¢, (modulo 27). For instance, witm=1 and < °2///////////////////////////////////
m=2, for giveny, the two stable solutions fog, read i» () 140 145 150 155
=(—Dp )12 and ¢u=(yf; -y )/ 2+ Analogously, in R 7 7
case ofn=1 andm=3, for giveny; the three stable solutions < 08///// ///////////ﬁ
of i, read = (Y1~ Py )13, o=(y— P} )/3+27/3, and © 140 145 150 155
Yo=(— P}, ) /3+4x/3. This bistability and multistability =0 LA T 5 Baidiad
is important for understanding the poststimulus responses S o ente st et Maan hnahl 5 .A...,..J.\A_...M
studied below(Secs. VII-IX). 140 145 150 185
Adding noise to the systerfD >0) changes the situation T T T Time [arb. units]

completely. The trajectory of the particle can no longer be Tetta Tk T+t

predicted. Rather the particle’s dynamics has to be described g 1 The cross-trial analysis is illustrated schematically. A
in a probabilistic sense. For instance, with the Fokker-Plancke jes of identical stimuli is administered to oscillator 1 at random

equation belonging to Eq9) the time course of the prob- (imesz, ,, ... 7. Onsets of the stimuli of oscillator 1 are indicated
ability densityp(®,y,t) can be determineg(®p, ,,t)dP,m by solid vertical lines. An identical time windoft,, t,] (with t,<0,
provides the probability of findingd,, in the interval t,>0)is attached to each stimulus and indicated by a shaded region
[P m, Ppmt+dD, ] (see Ref[1] and Chap. 9 in Refl32]).  at the top of each panel. The signaigt)=cog2md;(t)] andx,(t)
For an analysis of the influence of pulsatile stimulatjgh  =cod2w¢,(t)] defined by Eq(7) are displayed ira) and(b). The
=1 in Eq.(3)] on the noisy dynamics ob, ,, in the double-  phases¢; and ¢, from Eg. (14) are shown in(c) and (d). The
well potentialV from Eq.(12), | refer to Refs[29,30. normalized cyclic 1:1 phase differenge ; from Eq.(15) is shown
in (e). Continuous variations aroung ;=0 appear as abrupt jumps
between 0 and 1 becausg ;=0 and ¢, ;=1 are identical. The
lll. CROSS-TRIAL ANALYSIS BASED ON STOCHASTIC traces shown are obtained by numerical integration of the model
PHASE RESETTING given by Eqgs(3) and(4) with parameters as in Fig. 5. In this paper
A. Cross-trial analysis Eqgs.(3) and(4) are numerically solved with Euler’s technique and
' a time step of 0.0005.

| introducenormalized phases
lus in each window lies in’ =0. The window length,—t, is

(t
&;(t) :%Qmod 1 (j=1,2 (14) smaller than the length of the ISt,—t,<t,), but large
m compared to the time scale of the transient dynamics.
and thenormalized cyclic nm phase difference For the sake of simplicity | drop the prime i, so that
from now ont denotes the time axis of the window. To
_ Ny (t) - miy(t) evaluate the dynamics of the ensemble of stimulus-locked
Onmt) = mod 1. (15) Y
' 2 responses statistically, | collect the values trand ¢,

. across all trials for each time relative to stimulus onset.
| want to detect whether in an ensemble of responses to th

. ) ) 'Kccordingly, for each time e [t,,t,] | introduce the time-
stimulus there are epochs durmg_whlch the pha$§8¢2 dependenCT distributionsof the normalized phases from
and/or the phase difference,, display a stereotypical,

tightly stimulus-locked time course. To this end, | deliver aEq' (14) and the cyclicn:m phase difference from Eq15)

series ofl identical stimuli to oscillator 1 at random times
1,7, ...,7 @S shown in Fig. 1. The length of thaterstimu-
lus intervals(ISl) is randomized according to (it + Ther, yy Aenmt+ bt - (17)

Tir1 ~ Tk = twin + Lo (16)

where the minimal ISlt,,, is constant and large compared The time course ofy; and ¢, is perfectly stimulus locked
to the stimulation duration as well as the time scale of theat timet if the corresponding CT distributions from E@G.7)
transient dynamicg is uniformly distributed if0,k27/ w], are Dirac-like distributions, i.e..¢;(t+7)=¢;(t+7) and
wherek is a small integer. | attach an identical time window ¢, m(t+7) =@, n(t+7) foralli,k=1, ... |. If ¢; ande,, are
[ta,tp] to each stimulusgt, <0, t,>0, Fig. 2. Each window not at all stimulus locked at timg these distributions are
has a time axi$’, wheret’ € [t,,t,]. The onset of the stimu- uniform.
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B. Stimulus-locking indices

The extent of stimulus locking ap; and ¢, , is quantified
for each timet by means of the time-dependestimulus-
locking indices)\}”)(t) of ¢; given by

(= (18)

|
%E exdiv2mi(7+1)]
k=1

and then:m synchronization indeux, (t) of ¢, given by

2 eXr{iZﬂ'(Pn,m(Tk +1)]
k=1

: .9

O'n,m(t) = ‘

where |y| denotes the modulus of, and » is an integer
[28-3Q. )\f”)(t) detects whethep;'s CT distribution from
Eq.(17) at timet hasv peaks that are equally spaced @ 1]
(modulo ). With o, (t) | detect whethetp,, ,,'s CT distribu-
tion from Eq. (17) at time t has one prominent peak. O
<\ (=<1, 0=<o,n(t)<1 are fulfilled fort e[ty,t,] and
for all integerw. A" and onm are the modulus of theth and

the first Fourier mode of the corresponding CT distributions

from Eq. (17), respectively(see Ref[5]).

| consider the three leading indices=1,2, 3 in different
characteristic situations.

(i) If the distribution {¢;(t+ 7} ; at timet is uni-
form, )\E”)(t)=0 for v=1,2,3.

(i) One pronounced peak of the distributiofi;(t
+7 =1, at time t corresponds to Iarge\f”)(t) for v
=1,2,3.

PHYSICAL REVIEW B9, 051909(2004)

B =22 -\ (. (22)
—-1<p;(t)<1 is fulfilled for all timest, where three Dirac-
like symmetric and equally spaced peaks are connected with
Bi(t)=1.

] Geometrically speaking, the time-dependestimulus
locking indices)\J(V)(t) of ¢; from Eq.(18) represent a time-
dependent distance between the origin of the Gaussian plane
and the center of mass of the CT distribution
{exdiv2me(n+t)[}=1, ;. Inspired by circular statistics
[33], additionally, one can estimate the dispersion of the CT
distribution {exgiv27¢;(7+1) }=1,. ., in @ complementary
way. For this, | use the formulas for the mean angular devia-
tion of unimodal and antiphase bimodal distributidid<].

This enables one to introduce t&d mean angular deviation
A}l)(t) for a unimodal CT distribution{¢;(t+ )}y, ., at
time t and theCT mean angular deviatiom\fz)(t) for an
antiphase bimodal CT distributigfe;(t+7)}y=1,. , at timet
defined by

A1) = 021 -\7(0)], (23
where f;=1 and f,=0.5. The mean angular deviation is
equivalent to the standard deviation in linear statistics
[33,34. Analogously, one can introduce ti&I' mean angu-
lar deviation Y, ,(t) for a unimodal CT distributiod ¢y, mt
+7}k=1,..,) at timet by setting

Yn,m(t) = \“"2[1 - O'n,m(t)]- (24)

(iii) Two pronounced antiphase peaks of the distribution

{#j(t+ )}y, ) at timet are characterized by Iarge(lz)(t)
and small)\}”)(t) for v=1,3.

By definition the mean angular deviations from E@S8) and
(24) are complementary to the corresponding stimulus lock-

(iv) Three pronounced and equally spaced peaks of thing indices from Eqs(18) and (19). This will be demon-

distribution {¢;(t+ 7)}y=1, | at timet are connected with a
Iarge)\f)(t) and small\"(t) for v=1,2.
Based on Eq(18) | introduce indices which detect spe-

strated in Sec. VII B.
Apart from the indices defined by Egel8)—22), | use
indices based on the Shannon entrdpy3Q in order to

cific configurations of the CT distribution of the phase: A quantify the deviation of the distribution8p;(t+7)}=1,
resetting stimulus puts an oscillator to a particular phaseand{e, m(t+7)}=1..., from a uniform one in a more general

Therefore the index'” serves as eesetting indeof the jth
oscillator, denoted by
pi(H) =AM (). (20)

Two symmetric antiphase peaks of the distributifop(t
+7 k1., at timet are specifically detected with the time-

way. The time-dependent entropy bastichulus locking in-
dex u;(t) of ¢; reads

Mj(t)zw,

ax

(25

dependenantiphase CT clustering index of the jth oscillator WhereS(t)=-{; p; In p; is the entropy of the distribution

defined by
o) = N2 (1) = AP (), (21)

Ref.[30]. -1= «;(t) <1 is fulfilled for all timest, where two
Dirac-like symmetric antiphase peaks are related;t0) = 1.

{#i(t+7)}=1,. ) at timet, and p; denotes the relative fre-
quency of findingg;(t+7,) within theith bin. S,,=In N is
the entropy of a uniform distribution, whefé=ex{0.626
+0.4 In(1-1)] is the optimal number of bingg85], andl is the
number of stimuli administered.<Qu;(t)<1 holds for allt,
where y;(t)=0 corresponds to a uniform distributiamo

Analogously, three equally spaced symmetric peaks of thetimulus locking at timet, whereas;(t)=1 corresponds to a

distribution{¢;(t+ n)},1 .., at timet are detected by means
of the time-dependentT three-clustering index of the jth
oscillator defined by

Dirac-like distribution(perfect stimulus lockinpgat timet.
The time-dependent entropy basedm synchronization
index n, m(t) of ¢, m is given by
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Snax— Shm(t) Several statistical tests have been designed which enable
nm(t) = Sm— (26) one to test whether there is statistical evidence of directed-
ax ness in unimodal distributions. Examples of this kind of sta-
where S, () is the entropy of the distributiod ¢yt tistical tests are the Rayleigh taste Ref[33]), the Hodges
+ 7 hk=1,.. ) At timet. and Ajne’s tes{36—38, Rao’s spacing teqt39], the range
The first and the 99th percentile of the prestimulus distri-test [40], the x? test [41], Watson’s Uﬁ test[42], and the
butions of the indices {pj(t)}te[tayo[, {aj(t)}te[ta,o[’ Kuiper test[43-44.
{BOher o0 {0nmOher on 1 Oheron {mmOter, o0 The null hypothesis of such tests is that there is random-
{A}V)(t)}te[ta,o[v and{Yn,m(t)}te[ta,O[ serve as confidence levels N€SS, i.€., the observed distribution is uniform. Applying such

in order to determine whether a stimulus causes a significar?t test yields the> value, which is the smallest significance

. . S level by which the null hypothesis can be rejected. Accord-
increase or decrease of the corresponding locking index. F% ly, if the observed distribution is a uniform distribution
example, a pronounced reset, i.e., an increase of the StimUII(J)neyEJbtainsP—1 In contrast, if the observed distribution ha,s
locking of ¢; at timet, is considered significant provided T '

o . ' one pronounced peak, one get® aalue close to 0.
pi(t) is greater than the 99th percentile of the prestimulus These tests work well for unimodal distributions, i.e., for

distribution{p;(t)}crr,q- Correspondingly, a pronounced re- yioyip ions with one peak. In the case of multimodal distri-

set leads to a decrease A’Tl below its first percentilésee  pytions(distributions with more than one peatke situation
Sec. VII B). Significant stimulus-locked synchronization or g gifferent.

desynchronization at timeoccurs providedr, (t) exceeds (i) If a multimodal distribution hasy equally spaced
the 99th percentile or falls below the first percentile Ofpeaks, for example, two antiphase peéks2), one removes
{onm(O}eqr,o- The differences between the above men-the mulitmodality by the replacement

tioned indices will be discussed below.

—— (30)
C. Tests for randomness
In addition to the stimulus locking indices described inInstead of Eqs(27) and (28) the distribution of the phases
Sec. II B, for the evaluation of the CT distributions from Eq. @nd the corresponding circular distribution then read
(17) | use a statistical approach, which has been developed if#¥1,?¥2,....v¥ )} and  {expiv¥,), exgiv¥y), ...,
the field of circular statistic§31]. The starting point of this €Xpiv¥))}. The mean vector of such a scaled distribution
approach is an observed distributionlgfhases, which will ~ is

be denoted by
[

Wy, W W @7 R,expi®,) = %2 explin®y). (3D)
where the phas#; is unwrapped and not normalizgde., k=1
not divided by 2r) for j=1, ... |. The corresponding circular
distribution reads For v=1 (i.e., in the case of only one peakgs.(29) and
) ) ) (31) coincide:R=R;, ®=0;. Due to the replacement from
{exp(iWy), expliWy), ..., exgiWw))}. (28 Eq. (30) a multimodal distribution{¥,, ¥, ... W} with »

From the geometrical point of view, the distribution given by €qually spaced peaks turns into a unimodal distribution
Eq.(28) can be considered as a distribution of unit vectors it ?¥1,¥¥2, ... .v¥}. In this way, the replacement from
the complex plane. To determine whether this distributionEd. (30) makes it possible to apply all above mentioned
has a preferred orientation, one determines the mean vectdests for randomness to the unimodal distribution
| {0, vy, ... v}
) 1 _ Note, this trick, i.e., transforming an equally spaced mul-
Rexp(i0) = TZ explivy), (29 timodal distribution to a unimodal distribution by means of
k=t Eq.(30), is exactly the same reasoning that has been used for
whereR is the length and is the orientation of the mean the detection ofv equally spaced peaks in a CT distribution
vector. For the sake of illustration, one may assume that eadby means of the stimulus locking indices from E¢s8) and
unit vector is related to a madd located in exgW¥;) (j (19): With ¥y — 27¢;(n+1) one immediately getRV:AJ@
=1,...]). In this case the center of mass is located inx(t).
R exp(i®) in the complex plane. (i) If a multimodal distribution hasy, not necessarily
A basic task in circular statistics is to study the directed-equally spaced peaks, the replacement from(&@). will not
ness of the circular distribution from E8), i.e., to answer lead to a unimodal distribution. In this general case several
the following question: Is the observed circular distributionof the above mentioned tests will not fly. However, we can
significantly different from randomness. More precisely, isstill use Rao’s spacing teg89], the x? test[41], Watson’sUﬁ
there statistical evidence of one sidedness or directednesgsst[42], and the Kuiper test43—4§. All of these tests de-
Put otherwise, is the location of the center of mass signifitect whether the observed distribution differs significantly
cantly different from the origin of the Gaussian planefrom randomness. For this, the null hypothesis is that the
(R>0)? observed distribution is uniform.
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This statistical approach corresponds to estimating how The P values of the CT Kolomogorov-Smirnov tests and
strongly the observed CT distribution differs from a uniform their corresponding CT distributions from E.7) are de-
CT distribution by means of the entropy based stimulus locknoted by
ing indices from EQs.25) and (26). The entropy based

method compares the observed distribution with the uniform by(t) for {gj(t+ nlea, ., (39
distribution irrespective of the number of peaks of the ob-
served distributior{see Sec. Il B. Bam(t) for {enmt+ mdlk=1. - (36)

Statistical tests of this kind found numerous applications ) N
to physics and biology33]. For instance, in physiology sta- Thg P value provides .the smallest significance .Ievel by
tistical tests have been used to detect cardiorespiratory syMich the null hypothesidi.e., randomnegscan be rejected.
chronization[47—49. In this casel;,¥,, ... W, denote the Hence, one get®=1, provided the observed distribution is

phase difference between the cardiac and the respiratory Sig_nifﬁrm. If tT)e (_)bservecli CTIdistribution hla_s o(r;el Dira((;—_like
nals measured at consecutive tintgs,, ... ,t; during an ob-  P€ak, one obtains & value close to 0. Multimodal CT dis-

servation. Also for the study of movement coordination sta{fiPutions yield values oP somewhere in between 0 and 1
tistical tests have been appli¢g0]. (see below Note, from th(_—:~P value. one cannot infer the
number of peaks of a multimodal distribution.
In Secs. VII E and X the CT Kolomogorov-Smirnov test
D. Cross-trial Kolmogorov-Smirnov test will be compared to the stimulus locking indices from Sec.

The most accepted statistical test for continuous data ilsII B and to the CT Kuiper test described below.

the Kolmogorov-Smirnov test[51]. In this study the

Kolmogorov-Smirnov test is used in a cross-trial manner. To
test whether the observed CT distribution of the phase of The Kuiper test is a circular version of the Kolmogorov-
oscillator j, {¢;(t+ )}y, from Eq. (17), differs signifi- ~ Smirnov tes33,43-4§. To account for the circular nature

cantly from randomness, i.e., from a uniform distribution, 1 0f phases or phase differences, the Kuiper test does not use
determine the Correspondi® value denoted bY)J Analo- the maXima| Va|UED Of the absolute diﬁerence betWeen the
gously, to test whether the observed CT distribution of théWo cumulative distribution functionsee Eq(32)]. Instead,
n:m phase difference(g, n(t+ 7}y, . | from Eq.(17), dif-  the Kuiper test use¥=D"+D", where
fers significantly from a uniform distribution, the corre- D*= maxG(d) - P 37
spondingP valueB,, ,, is determined. 0=¢=1 (#)=P(4), (37

| explain the application of the Kolmogorov-Smirnov test
to the CT distribution of the phase of oscillatprit works D™= maxP(¢) - G(¢). (39)

similarly for the CT distribution of the: m phase difference. 0=¢=1
For each potential valug, the CT Kolmogorov-Smimov test For further details | refer to Ref$33,43—46. The P values

compares  the — proportion  of Values_‘ﬁj(Hﬁ)"ﬁj(t of the CT Kuiper tests and their corresponding CT distribu-
+7)),...,¢i(t+7), which are less tham, with the corre- tions from Eq.(17) read

sponding proportion of phase values of a uniform distribu-

E. Cross-trial Kuiper test

tion less thanp. G(¢) is the cumulative distribution function pj(t) for {j(t+ nle=1,. > (39
of the observed probability distribution. Put otherwi€4 )

is the function giving the frac_;tioq of the data po?n@(t Pom®  for {enmt+ ndber. - (40)
+71),¢i(t+ 1), ....¢;(t+7), which is left of ¢. P(¢) is the _ _
cumulative distribution function of a uniform distribution. In Secs. VB and VII E the CT Kuiper test will be com-

The K0|mogorov_5mirnov test uses the maximal vaue pared to the Stimulus-lOCking indices from Sec. Il B. In
of the absolute difference between the two cumulative distriSecs. VII E and X it will be explained why it is absolutely

bution functions necessary to use the CT Kuiper test instead of the CT Kol-
mogorov Smirnov test.
— _ The first and the 99th percentile of the prestimulus distri-
D= max|G P . 32
0= <1| (¢) - P& (32 butions{pj(t)}te[tayo[ and{Pn,m(t)}tE[tayo[ provide confidence

levels, which allow one to determine whether a stimulus
The probability of error(i.e., the probability valugfor re-  causes a significant change of the corresponding CT distri-
jecting the null hypothesis then reads bution of the phase or the phase difference.

o _ IV. STANDARD ANALYSIS APPLIED ACROSS TRIALS
Ps(d) =22 (- 1) lexp(- 2j%d?), (33

Pt In this section | sketch how standard univariate and bi-

variate data analysis are applied across trials.

where A. Cross-trial averaging

| 2 CT averaging relative to stimulus onset is widely used for
d= D( > +0.12+0.1 I_) . (34 noise reduction of biological signals, such as EF@Q and
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MEG signals[11,2§ as well as LFP$6]. In fact, CT aver-

aging is the golden standard in neuroscience and medicine
for the detection of stimulus-locked responses of an oscilla-

tor [7,10,17. The CT averaged signal of théh phase oscil-
lator is defined by Eq(1) and reads(t)=I"1%,_, (7 +t)
where the signal of thggh oscillator is given by Eq.7). The
stimulus onsets, 7, ...,7 Serve as trigger points for the
averaging procedure.

As discussed in Sec. |, calculating the CT averaged Sign%l.ingular behavior, alternatively.

is only justified, provided the responggunder consideration
can be decomposed into a stereotypical evoked respgnse

which follows the stimulus with a constant delay, and addi-

tive Gaussian noisg; according to Eq(2) [10,11.
The stochastic oscillator model given by E¢3) and(4)
violates the averaging assumption given by &j.

PHYSICAL REVIEW E 69, 051909(2004

> X (t+ Xo(t+ 7)
k=1

i [ .
\/{2 xG(t+ Tk)J \‘E X5(t + Tk)J
k=1 k=1

By definition C is set to zero if all responses af or X,
vanish at timet, in order to avoid a singularity. To avoid
one can use thess-trial
sign cross correlatiofCTSCQ betweenx; andx, at timet
defined by

C) = (42

1
St) = l—E Sgrix(t+ m)Xo(t + 7],

k=1

(43

(i) The oscillators perform an ongoing oscillation, so thatyhich corresponds to the CTCC of the signals’ signs, where

it is not appropriate to assume that their sigrals a deter-

sgna)=-1,0, or 1 ifa<0,=0, or>0.

ministic response only during a short period of time, and ¢ gnd S are normalized: —-% Cih<1 and -=St)<1

nothing but noise during the rest of the time.

(i) The stimulation effect may depend on the phase Ofstantc>0 or <0 for all k=1. .

the oscillator.

(iii) Noise is not simply added to the signg) but inher-
ent in the dynamics.

(iv) The oscillators may display a CT response clusterin

instead of reacting just stereotypically. Anyhow, all these fea-"

hold for allt. C(t)=1 or =1 if x;(t+ 1) =cX(t+ 7)) with con-
.. |. Analogously,S(t)=1 or
=1 if x,(t+7) andx,(t+7,) have either the same sign for all
k=1,...] or different signs for alk=1,...|. St)=0 if at

diaast one of the responses vanishes at timir all k

1,....

tures, which are in contradiction to the averaging assumption

from Eq. (2), are basic dynamical features which both the

model given by Egs(3) and (4) and oscillatory neuronal
activity have in commorgsee discussion in Seg. In a nut-
shell, the averaging assumption given by E2).is not ful-

V. TRANSMISSION OF CT AVERAGED RESPONSES
A. Transmission of resets

This section focuses on how a reset of oscillator 1 is

filled for the phase oscillator model under consideration asransmitted to oscillator 2. For this, | choose the simplest
well as for stimulated neuronal oscillations. And, the phasecase, where the two oscillators are 1:1 coupled, hem
oscillator model may serve as a simple model for stimulated=1 in Egs.(3) and(4). | assume that the coupling is strong

oscillatory brain activity.

B. Cross-trial standard deviation

enough compared to the noise amplitudeso that without
stimulation the two oscillators spontaneously synchronize in
phasgFigs. 2k)-2(m)]. The stimulus of oscillator 1 is mod-
eled byS(¢4)=I cosyy. The stimulation intensity is large

To estimate whether the poststimulus signals of the oscileompared to both coupling strengkhand noise amplitude
lators are stereotypical, | determine the standard deviatioD(K <1,D <1). Therefore oscillator 1 is quickly reset by the

across trials at each tinterelative to stimulus onset with the
cross-trial standard deviatiowf the jth oscillator according
to

|
0= 7S D-KOF, (4D
k=1
wherex; is the CT averaged signal from E@l), and x;(t)
=cog2m¢;(t)] according to Eqs(7) and (14). g;(t) is ex-
pected to be small when the signadg¢n+t) are perfectly
stimulus locked at timé and large when there is no stimulus
locking.

C. Cross-trial cross correlation

strong stimulusip, is shifted close tap5™'~ 0.36[Fig. 2(a)].

This reset is reflected by an increase of the resetting ipgex
from Eq. (20) [Fig. 2(b)] and the entropy based index
from Eg. (25) [Fig. 2c)]. The CT averaged signal, from

Eq. (1) vanishes during the prestimulus period because of the
randomized stimulus administratiofrig. 2(€)]. The reset
leads to an oscillatory CT averaged sigral which relaxes

to zero due to noise.

The stimulus of oscillator 1 perturbs the strong synchro-
nization between both oscillators. Because of the coupling
between the two oscillators, the phase of oscillator 2 gets
adapted to the phase of oscillator 1 within roughly a period.
Before the reset of oscillator 2 reaches its maximum, the two
oscillators undergo a transient epoch of desynchronization
and resynchronizatiofiFigs. 2k)-2(m)]: As soon as both

To reveal stimulus-locked linear correlations between theoscillators are fully resynchronized, the reset of oscillator 2
two oscillators | determine the cross correlation across trialss maximal [Figs. 2g) and Zh)]. In this way the reset of

at each time relative to stimulus onset with theross-trial
cross-correlation(CTCC) betweenx; andx, at timet given

by

oscillator 1 is transmitted onto oscillator 2 via the coupling.
The reset of oscillator 2 corresponds to an increase of the
resetting index, [Fig. 2g)] and the entropy based indgx
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FIG. 2. A strong stimulus(i4) =1 cos ¢, from Eq.(3) causes a
reset of oscillator 1 which is transmitted to oscillator 2. CT distri-
butions from Eq.(17) are shown as time-dependent histograms of
¢; and ¢, ; calculated across trials for each timeslative to stimu-
~ TA A~ lus onset within the time windoWty, tp]: {1 (t+ 1)}z, IN (@),

& I AAA A {¢a(t+mher..y i (F), and{g1 1(t+mhes,.. s in (K) (0 is black
4 6 8 and maximal values are whjtdndices from Eqs(19)<26) and CT

-1
-2 0 2
( O - L Wy averaged signals from E@L): p; in (b), uq1 in (C), Xg in (€), py in
< °5£ y h\\ 1% \ » 1 (9), ppin (h), Xz in (j), oy 1 in (1), and 7, 1 in (M). Base 10 loga-
0 2 B 8 rithm of the P values of the CT Kuiper test for randomness:
® 1 logyo(pj) from Eq. (39) for the CT distribution of the phase of
& o oscillator j in (d) and (i); log;o(Pnm) from Eq. (40) for the CT
9 R e : distribution of then: m phase difference ifn). Onset(att=0) and
4 offset of the stimulus of oscillator 1 are indicated by solid vertical
lines. Prestimulus interval+<< 0, poststimulus interval+>0. Sig-
o » nificance levels: Dotted lines ifb), (), (g), and(h) denote the 99th
2 percentile of the corresponding prestimulus distributions(dn
\% -10 W— (@), (), (j), (1), (m), and(n) upper and lower dotted lines indicate
%B 2 the 99th and the first percentile of the corresponding prestimulus
W~ distribution in the interva]-8,(. Note, a noninteresting part of the
prestimulus range of the time winddwy,t,]=[-8, 8] is not shown
for the sake of clarity, but used for the calculation of the signifi-
cance levels. Parameters of Eq8) and (4): K=3.5, n=m=1,
w1/(2m)=1.5,w,/ (27)=1.494,D=1,1=40, 6=0, t,,;,=16 [see Eq.
(16)], stimulus duration =0.15, and number of stimi#i200. Re-
sults are stable with respect to variationd detween 50 and 2000
and more.

f)

(h)

(1)

Time [arb. units]

[Fig. 2(h)] and causes an oscillatory CT averaged siggal based index, from Eq.(25) [Fig. 2c)]. The CT Kuiper test
which vanishes in the course of the poststimulus period beef the CT distribution of¢; [Fig. 2(d)] yields theP valuep;
cause of nois¢Fig. 2()]. from Eg.(39). Because of the randomized stimulus adminis-
Let me compare the CT distribution of phage and the tration the prestimulus CT distribution ap, is uniform.
corresponding indicep; and u, [Figs. 2a)-2(c)] with the ~ Therefore,p; is close to 1, i.e., log(py) attains values be-
CT distribution of phase, and the corresponding indices ~ tween 0 and —1. The strong reset corresponds teylpg
and u, [Figs. 2f)-2(h)]: The reset of oscillator 2 occurs by =-128.3 at stimulus offset. This means that with a probabil-
transmission via the coupling, and is delayed and less praty of 107*283the CT distribution ofg, at stimulus offset is a
nounced compared to the reset of oscillator 1. Furthermoreyniform distribution. In other words, the null hypothesis
the reset of oscillator 2 appears after the stimulus-lockeduniform distribution can be rejected: At stimulus offset the

desynchronizatioficompare Figs. @) and 21)]. CT distribution differs significantly from a uniform distribu-
tion.
B. Cross-trial Kuiper test By which of the three measurep;, u;, and py, is the

The reset of oscillator 1 shows up as an increase of thduration of the resetting epoch detected appropriately? The
resetting indexp; from Eq. (20) [Fig. 2b)] and the entropy three quantities reveal practically the same time as onset of
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the reset. However, the end and, hence, the duration of thmedicine and biology6,7,10,11. The maximal value of the

reset differs.p; exceeds its first prestimulus percentile for
t>5.63. While i, attains values below its 99th prestimulus
percentile already far> 3.37, p, falls below its 99th percen-
tile only for t>7.7. According to the impression one gets
from a visual inspection of the CT distribution of; [Fig.
2(a)], the time courses of both the resetting ingg»and the

P value p; of the CT Kuiper test reflect the duration of the
reset better compared to the entropy based ingdex

CT averaged signal of oscillatgrreads

% =% (t4). (47)

In this study | consider a stimulation term of lowest order,
i.e., a stimulation mechanism modeled by trigonometric
terms of first order:

The reset of oscillator 2 is weaker, but nevertheless reli-

ably detected by means of thevalue p, from Eq. (39) of
the CT Kuiper tesfFig. 2i)]. More precisely, the CT Kuiper

S(¢n) =1 cod ey + x), (48

test detects the reset as an epoch with a significantly nonunivhere y is a constant.

form CT distribution of¢,. Again, the duration of the reset is

First, | assume thay from Eq. (48) as well as the shift

better detected with the CT Kuiper test and with the resettindgerm 6 in the couplings in Eqq.3) and(4) vanish:x=60=0. |

index p, [Fig. 2(g)] as opposed to the index, [Fig. 2(h)].

study the impact of the coupling strength on the normalized

The transient desynchronization is related to a decrease tfansmission timesAt:e from Eg. (44) and At;v from Eq.

the 1:1 synchronization index; ; from Eq. (19) and a de-
crease of the entropy based 1:1 stimulus-locking ingex
from Eq. (26) below their first prestimulus percenti[€&ig.

(46). With increasing coupling strengtk the normalized
transmission time of the rese‘tf;e, decreases graduall¥ig.
3(a)]. For values oK greater than the intensity parameter

2(1)], respectively. Likewise, the CT Kuiper test detects thefrom Eq.(48) (1=40 in Fig. 3, At:e finally converges to zero:
transient desynchronization. The strong synchronization durfhe two oscillators then behave like one composite oscilla-

ing the prestimulus epoch is connected with a srRallalue
P, 1 from Eq. (40) [Fig. 2n)]: The null hypothesiguniform
distribution) is clearly rejected. In contrast, during the tran-
sient epoch of desynchronization the CT distributionpgf
gets more random, so that lgdP; 1) exceeds its 99th pre-

tor. This convergence is not shown in Fig. 3; rather | focus
on phenomena occurring for weaker coupling, since the latter
is more realistic for applications to biology and medicine.
Unlike At,,, the normalized transmission time of the CT
average&t;v from Eq.(46) displays a discrete dependence on

stimulus percentile. As a consequence of the resynchronizd<: Over the whole range of the coupling constant, i.e., for

tion, log;o(Py, 1) enters its prestimulus range again.

C. Transmission time

0=K=<15, At;V takes only discrete valugsxcept for minor
fluctuationg O, 1, and 2. With an increase &f, At,, jumps
from 2 to 1 and finally to O, with an overlap of the different

levels of At

Let me consider how the transmission time of the reset, To understand the discrete dependencaé@ on K. let

i.e., the time elapsing between the maximal reset of oscillatof,e consider the time course

1 and the maximal reset of oscillator 2 depends on differen
model parameters. | compare it with the transmission time o
the CT average, i.e., the time between the maximum of th
CT averaged signal of oscillator 1 and the maximum of th
CT averaged signal of oscillator 2. | normalize both quanti-
ties by division by the mean period of the oscillatofs,
=47/ (w,+ w,), and obtain thenormalized transmission time
of the reset

2 1
tl('e) - tl('e)
T

*

Aty = (44)

Wheretg) is the time at which the resetting indpxfrom Eq.
(20) is maximal. The maximal value of the resetting index of
oscillator j is denoted by

pj= pj(tl('iz))' (45)

Analogously, one obtains theormalized transmission time
of the CT average

2 1
C_ et

Atav - T

(46)

with t§3 being the time at which the CT averaged sigﬁ@l
from Eq. (1) is maximaI.At;v corresponds to the standard

ﬁffor intermediate coupling
£K=2.02) and strong couplingK=11.3 [Figs. 4a) and
(b)]. According to their coupling mechanism, defined by

®gs. (3) and (4) with 6=0, both oscillators spontaneously

end to synchronize in phase. A maximum of the CT aver-
aged responsg, requires a maximum of the reset of oscil-
lator 2, which, in turn, requires a complete in-phase resyn-
chronization of the two oscillatorgsee discussion in the
former section and Figs.(D and 2j)]. As a consequence of
the particular form of the coupling, which induces an in-
phase synchronization, the maximaxgfandx, are separated
by multiples of their period =4/ (w,+ w,). The quicker the
resynchronization takes place, the stronger the coupling is.
Accordingly, for strong coupling the maxima of andXx,
coincide, andAt,,=0. In contrast, for intermediate coupling
it takesx, one more period to attain its maximumt,,=1.

The fact thatAt,, depends orK gradually, whereadt,,
depends orK in a discrete way, is stable with respect to
variations of the number of trials While | equals 800 in Fig.
3(a), | equals 200 in Fig. @). With a smaller number of
trials | the amplitude of the variations aft,, around the
curve obtained for=800 increases, especially for small cou-
pling strength. In contrast, for smallethe range oK with
overlapping levels oAt increases, the levels itself get more

av .
noisy, and even higher levels dit,, are added: For one

method for the detection of transmission times, as used imalue ofK one getsAt,,=3.
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FIG. 3. (Color) In series of simulations the coupling strendthof Egs. (3) and (4) is varied between 0.5 and 15. The stimulation
parametely of S(i1)=1 coq ¢ +x) from Eq.(48) and the phase shift of the coupling terms of Eq$3) and(4) are varied between different
series. Normalized transmission time of the r%é,; from Eq. (44) (blue dot3 and normalized transmission time of the CT averag:e,
from Eq.(46) (red dot$ are displayed iria), (c), (e), (g), (i), (k), (m), and(0). The maximal values of the resetting index of both oscillators,
p1 (green andp, (blue) from Eg.(45), and the maximal value of the CT averaged signal of both oscillatgisnagentaandX, (red) from
Eq. (47), are plotted in(b), (d), (f), (h), (j), (1), (n), and(p). (a)—() Variation of the stimulation parametgt while coupling parametef is
constantly equal to O: Ifib) number of trialsl equals 200, whereas in all other pldts800. Stimulation parametey=0 in (a)«d), x
=7/2 in (e),(f), x=m in (g),(h), and x=37/2 in (i),(j). (K)«(p) Variation of the coupling parameté& with constant stimulation parameter
x=0: 0=7/2 in (k),(I), =, in (M),(n), and =37/2 in (0),(p).

1. Impact of the stimulation parametey differences between thit,, vs K curve for different values
of x are more pronounced\t,, may attain integer values
Does the phase to which oscillator 1 is reset by the stimubetween 0 and 4. However, the coupling range, where the
lus influence the normalized transmission timég, and  different levels ofAt,, occur, as well as the range of the
At’;v? Put otherwise, how does the stimulation paramgter discrete levels oﬂt;\, strongly depend on the parameper
from Eq.(48) modify the normalized transmission times? To Only for y= the normalized transmission timi,, attaips
study the impact of the stimulation mechanism, the couplingralues up to 4, whereas fog=7 no zero values oft,,
is kept constant, i.e4=0 in Egs.(3) and(4). The parameter occur. The latter is due te; having its maximum directly at
x in the stimulation mechanisr®(i;)=1 cog¢;+y) from the end of the stimulation fox:_q-r. For the range oK con-
Eq. (48) determines the phase to which oscillator 1 is reset agidered here, the resynchronization of the two oscillators
the end of the stimulation. A stimulus modelled By, takes_longe_r than the short time distance between the end of
=| cog(yy +km/2) resets the phase of oscillator 1 g5 the stimulation and the occurrencexgfs maximum.
—km/2] modi, Wheregzsita‘z 0.36, anck=0,1,2,3(see Fig. In summary, the dependence At on K is basically

3 invariant with respect to variations gf The dependence of
2(2)) and Ref[5]). Note thate;(t) =¢;(t)/ (2m) mod1 accord- Ay on K remains discrete, where the concrete shape of this

ing to Eq.(14). | determine how the normalizeq trqnsmission curve undergoes changes depending on the valye ldbw-
times depend oK for different values of: x=0in Fig. 3a),  ever, one important feature of thit;, vs K curve remains
x=m/2 in Fig. 3e), x=m in Fig. @), andx=37/2 in Fig.  invariant with respect to variations af At,, corresponds to
3(i). All other parameters in Figs.(8, 3(9), and 3i) are  the phase difference; ; between the two oscillators in the
identical to those in Fig. (3). X stable synchronized state plus an integewherek repre-
Except for minor fluctuations the dependencé\gf onK  sents the number of periods of lengthwhich are left over
is not modified by the different values qf In contrast, the after dividingkT by T in Eq. (46). Accordingly, for in-phase
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The integerk represents a number of periods of length

i Oat%:/\ which remains after the normalization, i.e., after division by
IS 4L ‘ ‘ ] the periodT in Eq. (46).

0 os ! e The occurrence of negative valuesAt, is illustrated in

(b)‘g‘ ! ‘ ‘ ' Figs. 4c) and 4d), which show the time course oTj for
& °‘—’\¥/\/\ intermediate coupling(K=2.6) and strong coupling(K
o 05 1 15 =11.3, respectively. The simulations shown in Figgc)4
© ‘ : — and 4d) belong to the series of simulations displayed in Fig.
& 0=><O<>O<>< 3(m). As 6=, both oscillators spontaneously tend to syn-
&l 1 o5 : i chronize in antiphase. Therefore the maximapéndx, are
@ _, ‘ shifted in time byT/2+kT, where T=47x/(w;+wy) is the
) 0:><i><><><>< period of the oscillations ankl is an integer. For smaller or
ol : ; larger coupling strengtliK, the process of the poststimulus
© 0 05 1 15 resynchronization takes a longer or shorter time, and, hence,
‘ ‘ : the maximal reset of oscillator 2, combined with a maximum
S oF—] of x,, appears at a later or earlier timg. has its minimum
1 o : 5 directly after the stimulation. Thus, for sufficiently lar¢e
Time [arb. units] tAfrEg)]maximum ofx, occurs before the maximum of [Fig.

FIG. 4. (Colon (a)«(d) Time course of the CT averaged signals ~ The variation of the coupling paramet@rillustrates that

X, (blue line andx, (red line from Eg. (1) belonging to selected At;\, corresponds to the phase differenqa§l between the

simulations of Fig. 3(a) and (b) belong to Fig. &), whereagc)  two oscillators in the stable synchronized state. To under-

and (d) belong to Fig. 8m). Coupling strengthsk=2.02 (a), K stand the dependence @f ;, on model parameters, let me

=11.3 (b), K=2.6 (¢), and K=11.3 (d). (¢) X, belonging to the  consider Eq.(13), which shows how the coupling mecha-

simulations of Fig. &) (green ling and of Fig. 3f) (blue line with nism, i.e., the values af andm, the coupling strengtK, the

K=0.5 each. detuningy=nw;-mw,, and the coupling parametérdeter-
mine the value of the stable fixed poibf, . | recall thate; ;

coupling with vanishing detuningt,, may attain the values and ®, , correspond to each other according to E@.and

0, 1, 2, etc., depending on the coupling strength (15). From Eq.(13) it follows that by increasing from 0 to
2, ¢f 4 is shifted once through a cycle.

2. Impact of the coupling paramete®

In this Section | focus on howt,, andAt,, are influenced
by the coupling parameték For this, the stimulation param-

eter x in the stimulation mechanisn®(¢;) =1 cog¢,+x) The maximal value of the resetting index of tftk oscil-

from Eq. (48) is constantly set to zero. The dependence Ofiator is denoted by =p;(t'), whereas the maximum of the

th lized t ission ti Knis plotted for diff o o — o
€ normalizeéd transmission imes Bns plotted for difler- cT ayeraged signal of thigh oscillator reads; =x;(t) [see
ent values off: =0 in Fig. 3@), 8==/2 in Fig. 3Kk), 6=

in Fig. 3(m), and §=3#/2 in Fig. 30). All other parameters Egs. (49 and (47)]. According to Eq.(48) the stimulation

o : . .= mechanism is given b$(¢;)=I coqy,+x). Figure 3 shows
l;(al):lgs- k), 3(m), and o) are identical to those in Fig. 0 imoact of the stimulation parameterand the coupling

. ) . . parameter on p; andX.
Neglecting minor fluctuations, the dependence\gf on J L - n
K is invariant with respect to variations éf In ContrastAt;v Except for minor variations the dependencepefand p,

. : o on the coupling strengti hardly changes with respect to
crucially depends Oﬂ'. From thg coupling mech_amsm it fol- ariations ofy and 6. This also holds for a smaller number of
lows thgt th.e phase d|fference_ in t_he synchromzed_statg reagsais [1=200 in Fig. 3d), compared td=800 in all other
g(lnﬁ)_?’:\rlﬂj Flg':%aésgoilhﬂ_:?'?g(;)n E'gr'rgg)’oﬁail;?'S f'g HQ%’ plots of Fig. 3. With an increase of the coupling strend¢h
we ,etAt*gDi'(l) 1' or 2[Fig. 3(a).] For 0?77/2 gtY’ attains the strength of the transmission and, thus, the strength of the
the ?/aluegl\/<_+0’ 7'5 with kzg;l 0 1 2[Fi_ 3(k5] Faér 9= transmitted reset of oscillator 2 increasgs: strongly in-

AL takes the ;/aluek+0 5 Wi,th I,<:'—1 Ogll[Fig. am)] Fo’r creases vyith an increasei6f In contrast,_with an increase of
0;% 12 AL :kwLO 25 with k’:O’ 1 F'. : | the coupling strengtk, the reset of oscillator 1, as detected
mle We gelaly, oo W 1 [Fig. J0)]. In by p1, moderately decreases. For sufficiently large coupling
summary, strengthK, i.e., withK greater than the intensity parameter
. (1=40 in Fig. 3, p; andp, finally converge: The two oscil-
Atav:|<+2— (49 lators are then tightly coupled and behave like one giant
7 oscillator. The reset of this composite oscillator is less pro-
with integerk, and, henceAt;V directly corresponds to the nounced compared to the reset of a single oscilleteep,).
phase difference between the two oscillators spontaneousiyhe range of the coupling strength in Fig. 3 is restricted to
emerging during the poststimulus process of resynchronizaralues up to 15, in order to stick to values that are realistic in
tion according to the coupling mechanism plus an intéger the context of models in biology and medicine.

D. Strength of reset vs amplitude of CT averaged signal
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Since a reset leads to a nonvanishing CT averaged signiected by the time course of the resetting inggXrom Eq.
Yj from Eq. (1) [see Figs. @)—-2(h)], with an increase oK  (20) [Fig. 5b)] and the entropy based indgx from Eq.(25)
the CT averaged response and, thjsjncreaseqFig. 3). [Fig. 5e)]. Additionally, the reset is illustrated by means of a
The shape of th&, vs K curve depends on the stimulation phase resetting curvi®,5] showing ¢E plotted overqbi‘ for
parametery and the coupling paramet@ér These variations all | trials, Wheredf and d)E denote the phase of oscillator 1
are moderate compared to how strongly the shape okthe at the beginning and at the end of the stimulation, respec-
vs K curve depends, in particular, on the stimulation paramiively [Fig. 6@)]. Nearly irrespective of the initial phas,e?,
eter y [see, e.g., Figs.(B) and 3f)]. This is due to the oscillator 1 is always reset close to 0.3. Such a horizontal
parametery determining to which phase oscillator 1 is resetphase resetting curve is a signature of a strong &8t
at the end of the stimulation. For suitablea maximum of In contrast, the phase of oscillator 2 is not stereotypically
%, occurs directly at the end of the stimulatighig. 4(e), reset to one phase value. Rather, oscillator 2 adapts its phase
blue ling. In contrast, the latek;’'s maximum occurs after to the phase of oscillator 1. By doing this, as described in
the stimulation, the smaller is its amplitufleig. 4(e), green  Sec. VI, oscillator 2 may tend to one of two different, an-
line]. For sufficiently large coupling strengtl the two os-  tiphase stable states. This is illustrated by means of a phase
cillators act as one joint oscillator, so that finafly and%,  resetting curve withgs being plotted overg5. 45 is the
converge(Fig. 3). phase of oscillator 2 at the time when the antiphase CT re-
sponse clustering is maximal, i.e., when the antiphase CT
VL. n:m COUPLING response clustering index, from Eq. (21) is maximal[at
) time t(cf):o.56, Fig. 3m)]. ¢>§ is the phase of oscillator 2 at

Let me now turn tan:m coupling, wheren# 1 and/orm the beginning of the stimulation. For O<a’¢§<0.78, ¢g
#1(@ndn#m) in Egs.(3) and(4). Again, only oscillator 1 predominantly lies around 0.9Bnodulo 1), whereas$$ at-
is stimulated, and the perturbation is transmitted to oscillatofgins values around 0.45 else. Put otherwise, depending on
2. However, depending on the interplay of stimulationihe jnjtial conditions oscillator 2 switches between two dif-
mechanism, modeled B(y,) [e.9., Eq(48)], andn:mcou-  ferent antiphase responses across trials. The antiphase CT
pling, oscillator 1 and/or oscillator 2 do not exhibit a CT response clustering is detected with the antiphase CT re-
averaged response. In other words, the transmission of ”‘Q)onse clustering index, [Fig. 5m)] and, to a certain ex-
stimulus’ action escapes detection when cross-trial averagingnt, also with the entropy based index [Fig. 5n)],
is used. In contrast, the cross-trial stochastic phase resettifghereas it escapes detection with the resetting inddFig.
analysis from Sec. Il reliably detects the transient processesk)].
under consideration. . Before stimulation both oscillators are synchronifEi.

All of the dynamical phenomena presented in Secsghy). The reset of oscillator 1 perturbs the synchronization,
VII-IX are due to a major difference between 1:1 couplingso that a transient stimulus-locked desynchronization occurs:
andn:m Coupling: As eXplained in Sec. Il B, in case of the Both the 1:2 Synchronization indaxlz from Eq (19) and
1:1 coupling Eq(9), the evolution equation of the 1:1 phase the related entropy based index , from Eq.(26) fall below
difference®, ;, has only one stable fixed poifit; ; modulo  the prestimulus baseline, i.e., below the first percentile of the
27 (for vanishing noise an& > ). This stable fixed point, corresponding CT distributiofFigs. i) and %q)]. As soon
in turn, is related to only one stable solution of the phages as oscillator 2 has adapted its phase to the phase of oscillator
and i, (modulo 2). In contrast, witn:m coupling a bista- 1 the antiphase CT response clustering is maxifféd.
bility and multistability comes into play: Also fan:m cou-  5m)], and the stimulus-locked synchronization has reached
pling there is only one stable fixed poidt; ;, modulo 27 jts prestimulus leve[Figs. i) and Fq)].

(for vanishing noise an&> y), which is due to the simple | et us study the transmission time elapsing between the
in-phase coupling of lowest order, &m);-my,+6) and  maximal reset of oscillator 1 and the maximal CT response
sin(my,—ny, - 6) in Egs. (3) and (4) (see Sec. Il B How-  clustering of oscillator 2. Normalizing this quantity by divi-
ever, the stable fixed poinb; , now corresponds to more sjon by the mean period of the oscillatofss 47/ (wy+ w,),
than only one stable solution of the phasgs and >  we obtain thenormalized transmission time between the re-
(modulo 27). The number of different stable synchronized set of oscillator 1 and the CT response clustering of oscilla-
states depends on the valuesrofand m (see Sec. Il B tor 2,

Consequently, after stimulation the twom coupled oscilla-

tors may relax to different synchronized states. A = t2 D

cl-re™ T ’ (50)

VIl. NO TRANSMISSION OF THE CT AVERAGED

RESPONSE Wheretﬁi) is the time at which the resetting indpxfrom Eq.
(20) is maximal, Whereas(cf) is the time at which the an-
tiphase CT response clustering index from Eg. (21) is

In this section | demonstrate how by transmission a resetnaximal.

of oscillator 1 causes an antiphase CT response clustering of To focus on the impact of the coupling on the transmis-
oscillator 2. To this end, | consider 1:2 coupled oscillatorssion of the stimulus’ effect, | determine haait, ., changes
with eigenfrequencies; ~2w, (Fig. 5). A strong stimulus  with an increase of the coupling strendth while all other
S(¢n)=1 cosiyn resets oscillator JFig. 5a)]. This is re- model parameters are kept constant. With an increase of the

A. 1:2 coupling
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FIG. 5. A strong stimulu$(¢,)=1 cos ¢4 from Eq.(3) causes a reset of oscillator 1 which, being transmitted, shows up as antiphase CT
response clustering of oscillator 2. CT distributions from E§7): {¢i(t+n)hk=1. ) IN (@), {1 t+ k=1, in (h), and {(t
+7)}ke1.. 1 in () (O is black and maximal values are whit@Quantities from Eqs(18)—(26): py in (b), A\ in (0), ay in (d), p in (e), A
in (f), A(lz) in (9), o12in (i), pz in (K), )\(22) in (), ap in (M), uy in (N), A(Zl) in (0), A(Z2 in (), 712in (g), andY; , in (r). Same format as in
Fig. 2. Significance levels: Dotted lines i), (c), (e), (k), (I), and (n) denote the 99th percentile of the corresponding prestimulus
distributions. Dotted lines iff), (g), (0), and(p) denote the first percentile of the corresponding prestimulus distributiod), i) and(m),

(g), and(r) upper and lower dotted lines indicate the 99th and the first percentile of the corresponding prestimulus distribution in the interval
[-8,(. Prestimulus time window used for calculating the significance leyg|s0[=[-8,(. Parameters of Eq$3) and(4): K=3.5,n=1,

m=2, w1/ (2m)=1.5, w,/(27)=0.747,D=1, 1=40, 0=0 t,;,=16 [see Eq.(16)], stimulus duration =0.15, and number of stimL#i200.

Results are stable with respect to variationg bétween 50 and 2000 and more.

coupling strengthK, At . decreases gradualljFig. §c), B. Mean angular deviation
compare Fig. B A quantity comparable tat;, from Eq.(46) Based on techniques from circular statistjg8], in Sec.
cannot be used here, since the CT averaged response of ¢g+the CT mean angular deviatiafq(l)(t) for a unimodal CT
cillator 2 vanishes due to the antiphase CT response C|USteﬂ'iStribUti0n{(f)j(t+Tk)}k:]_'__.] at timet and the CT mean an-
ing [Fig. 7(0)]. gular deviationA}z)(t) for an antiphase bimodal CT distribu-

To assess how the extent of the reset and of the CT Ijon {4 (t+ 7}, , at timet have been introduced as addi-
sponse clustering vary with variations of the couplingyjona measures for the stimulus-locking indiced'(t) and
strength, | introduce the maximal value @4, the antiphase x(z)(t) [Eqs.(18), (20), and(23)]. A strong reset cjorresponds
CT clustering index of oscillator 2 from E¢21), by j D ' A N0

to large values of the resetting mdp?(t)—)\j (t) and small

values of the CT mean angular deviatinﬁ)(t). Absence of
&= ay(tP). (51)  areset is related to smaph(t) and IargeA}l)(t). This rela-
Additionally | usep,, the maximal value of the resetting tionship betweem; and A is reflected by the time courses
index of oscillator 1 from Eq45). With an increase oK the  in Figs. %b) and &f) as well as Figs. &) and 50).
strength of the reset of oscillator 1 slightly decreases, According to Egs.(19) and (24), the CT mean angular
whereas the strength of the antiphase CT response clusterinigviation Y, (t) for a unimodal CT distribution{¢, (t
strongly increasefFig. 6d)]. +Tlk=1,..,) at timet serves as an additional measure for the
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over ¢, (b) ¢35 is plotted overgy; ¢ =¢;(0) is the phase of thth

oscillator at the beginning of the stimulationb(,JE2 is the phase of FIG. 7. CT averaged signalg (a) andx, (c) from Eq.(1), CT
oscillator 1 at the end of the stimulatioqng:gbz(tcl)) is the phase of standard deviatiop; (b) and ¢, (d) from Eq. (41), and CT cross
oscillator 2 at the time when the CT response clustering is maximatorrelationC (e) from Eq. (42) of the simulation shown in Fig. 5.
[tg):O.SG, see Fig. @)]. [(c) and(d)] The coupling strengtl is Lower and upper dotted lines indicate the corresponding 1st and
varied between 0.5 and X®ith all other parameters as in Fig).5 99th percentile of the corresponding prestimulus distribution in the
Aty from Eq.(50), i.e., the normalized transmission time between interval[-8,0].

the maximal reset of oscillator 1 and the maximal antiphase CT

response clustering of oscillator 2, is plotted(@. p; (thin line), locked responses are the reason why the CT standard devia-
the maxirpal value of the resetting index of oscillator 1 from Ed. tjon is not an appropriate method for the analysis of
(45_), apd a, (thick I_ine), the maximal value of the a_ntiphase clus- stimulus-locked responsg80].
tering index of oscillator 2 from E¢51), are shown ir(d). To detect stimulus-locked linear correlations between the
two oscillators | compute the CT cross correlatiGnfrom

n:m synchronization indexr, ,(t). Large values oY, (1)  Eq. (42). There are no stimulus-locked changesCpfrather
correspond to small values of, ,(t) and vice versa, as dem- C remains within the prestimulus range throughout the whole
onstrated by Figs.(d and &r). poststimulus periodiFig. 7(e)]. In particular,C is not able to

In fact, for the analysis of the presented signals, generatedetect the stimulus-locked transient desynchronization re-
by numerical simulations of Eqg3) and (4), A}”)(t) and  vealed with the 1:2 synchronization index , from Eq.(19)
)\}V)(t) (v=1,2 as well asY, () and o, (t) provide very [Fig. Xj)] and the related entropy based indgyx, from Eq.
similar and alternative information, respectively. (26) [Fig. S(K)].

C. Comparison with the standard cross-trial analysis D. 1:3 coupling

Due to the reset of oscillator 1, the corresponding CT Depending on the coupling mechanism, one may also ob-
averaged signak, from Eq. (1) shows an oscillatory re- serve CT response clustering of higher order, i.e., there may
sponsdFig. 7(a)], similar to that one plotted in Fig.(@). In be three or more clusters of different responses across trials.
contrast, as a consequence of the antiphase CT response clé&eyr illustration, | consider 1:3 coupled oscillators with eigen-
tering the CT averaged signel of oscillator 2 vanishefFig.  frequenciesw; = 3w, (Fig. 8). A resetting stimulusS(¢,)
7(c)]: The poststimulug, stays within the prestimulus range =1 cos i, is administered to oscillator [Fig. 8@)]. The reset
given by the first and 99th percentile of the prestimulus disis detected with the resetting indgx from Eq. (20) [Fig.
tribution ofx,. Hence, with CT averaging the transmission of 8(b)] and the entropy based indgy from Eg. (25 [Fig.
the stimulus’ action cannot be detected. 8(c)]. The corresponding phase resetting curve shows that

Because of the reset of oscillator 1, at the end of theoscillator 1 is reset, irrespective of the initial phas [Fig.
stimulation its CT standard deviatiom, is clearly smaller  8(m)].
compared to the prestimulus range. However, during its fol- In contrast, the phase of oscillator 2 is not stereotypically
lowing reincreaseg; undergoes an artificial oscillation with reset to one particular value. Rather, by adapting its phase to
twice the frequency of oscillator [Fig. 7(b)]. The same type the phase of oscillator 1, oscillator 2 may choose one of three
of artificial oscillation is observed iw,, the CT standard different, equidistant stable states, as described in Sec. VI.
deviation of oscillator 2[Fig. 7(d)]. Such artificial oscilla- This is shown with a phase resetting curve, whex% is
tions with typically twice the frequency of the stimulus- plotted over¢§ [Fig. &n)]. ¢‘23 is the phase of oscillator 2 at
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FIG. 8. A strong stimulus(y) =1 cos ¢, from Eq.(3) causes a
reset of oscillator 1 and, by transmission, a CT response three clus-
tering of oscillator 2. CT distributions from Eql7): {¢4(t
+ 7 k=1, In (@) and{g(t+ n) k=1 in (@) (O is black and maxi-
mal values are whie Indices from Eqs(20)—«25): p; in (b), xq In
(©), poin (h), ay in (i), B> in (j), andu, in (k). CT averaged signals
from Eq. (1): X; in (f) andx; in (n). Base 10 logarithm of th@
values of the CT Kuiper test for randomness: g;) from Eq.
(39) for the CT distribution of the phase of oscillatpin (d) and
(). Base 10 logarithm of thé values of the CT Kolmogorov-
Smirnov test for randomness: lpgo;) from Eq. (35 for the CT
distribution of the phase of oscillatgrin (e) and(m). Same format
as in Fig. 2. Prestimulus time window used for calculating the
significance levelsft,,0[=[-8,d. Parameters of Eq$3) and(4):
K=3.5,n=1, m=3, w,/(27)=1.5, w,/(27)=0.498,D=1, 1=40,
0=0, t,in=16 [see Eq(16)], stimulus duration =0.15, and number
of stimuli 1=200. Results are stable with respect to variations of
between 50 and 2000 and more. Phase resetting clifggsind
(M]: (0) ¢f is plotted overg?, (p) 5 is plotted overgs; ¢
=¢;(0) is the phase of thgth oscillator at the beginning of the
stimulation,qﬁf is the phase of oscillator 1 at the end of the stimu-
lation, ¢§:¢2(tg)) is the phase of oscillator 2 at the time when the
CT response three clustering is maxir(ﬁf)=0.44, sed))].

the time when the CT response three clustering is maximalThe CT response three clustering is detected with the CT

i.e., when the CT three-clustering ind@x from Eq. (22) is

three-clustering inde), from Eq. (22) [Fig. §i)] and, less

maximal [at time t(cf)=0.44, Fig. 8)]. ¢§ is the phase of pronounced, also with the entropy based inggxFig. &)1,
oscillator 2 at the beginning of the stimulation. Approxi- whereas it cannot be detected with the resetting ingex
mately a third of a cycl¢0,1] of ¢5 is connected with one [Fig. 8g)] or the CT antiphase response clustering indgx

of three equidistant values Q;ﬁg (modulo 1), respectively.

from Eq.(21) [Fig. 5h)].
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While the reset is connected with a nonvanishing aver{52]. The reflex reversal is essential for an adaptive control
aged responsg, from Eq. (1) [Fig. 8e)], the CT averaged of locomotion.

signalx, of oscillator 2 is averaged olifig. &1)], because Let me consider a simple stimulation mechanism which
the three clusters of responses are of similar size and hawauses an antiphase CT response clustering of the stimulated
equidistant phasds-igs. §f) and &n)]. oscillator in a way comparable to the reflex reversal. For this,

| use S(¢/1) =l cog2¢). Depending on the initial phase, os-
cillator 1 generates one of two antiphase responses. This is
E. Cross-trial Kuiper test shown by means of the phase resetting curve, wh&nglot-

The strong reset of oscillator 1 is detected by the indiceded overg? for all | trials [Fig. 9k)]. ¢7 and ¢ denote the
p; and u; as well as with the CT Kuiper test: The resetting phase o_f oscillator 1 _at the tE>eg_|nn|ng and at the end of the
index p, from Eq.(20) and the entropy based indgx from stlmulatlBon, respectlvely.E¢1 is close to 0.6'6 'for
Eq. (25) increase beyond their 99th prestimulus percentiled-32< ¢1 <0.84, whereag); is close to 0.16 else, with little
[Figs. &b) and 8c)], respectively. TheP valuep, from Eq.  OVerlap between the two regions ¢f [Fig. 9k)]. Accord-
(35), obtained with the CT Kuiper test, decreases below itdngly, the CT dlstrlbl_Jtlon of the phase of oscillator l_ show_s
first prestimulus percentilgFig. 8d)]. The duration of the WO pronounced antiphase peaks at the end of the stimulation
reset, as given by the pattern of the CT distributionefis  [Fig- X@]. This, in turn, corresponds to high values f,
best represented by the time coursgppfind log(py). the antiphase CT clustering index from Eg1) [Fig. qb)].
The CT response three clustering is specifically detecte_g:onsstently, the clustering is not detected with thg resetting
with the CT three-clustering indeg, from Eq. (22) [Fig. index p; from Eg. (20). Noise makes the clustering fade
8()]. Furthermore, it shows up as an increase of the entrop@Way in the course of the poststimulus transient.
based indexu; beyond its 99th prestimulus percentfig. As explained in Sec. VI, as a consequence of the 1:2
8(j)]. The P valuep, of the CT Kuiper test, decreases below coupling, in the stable syn.chronlzed state the same value of
its first prestimulus percentil§Fig. 8&1)]. This means that #2 Pelongs to the two antiphase valuesdf Correspond-
during the CT response three clustering the CT distributiodd!y; after the stimulation one peak of the CT distribution of
of ¢, is significantly different from the prestimulus uniform ¢z iS formed[Fig. 9g)]. However, the phase resetting curve
distribution. The duration of the CT response three clusterShows that the reset caused by transmission is less pro-
ing, i.e., the pattern of the CT distribution @f,, is best nouncedFig. Al)] compared to a reset caused by direct and
reflected by the time course @. Note, the CT Kuiper test  Strong stimulatior[Fig. 6@]. Nevertheless, the reset is de-
detects both a reset and a CT response clustering as epodfi§ted with the resetting index, from Eq. (20) [Fig. Af)],
during which the CT distribution of the phase differs signifi- Whereas the antiphase CT clustering indgxrom Eq. (21)
cantly from a uniform distribution. With the CT Kuiper test falls below the prestimulus range. An increasepgfcom-

one cannot distinguish between a reset and a CT respon8é1€d with a decrease a; is indicative of a resefcompare
clustering. Figs. §b) and 5c)]. The reset causes a transient desynchro-

The Kuiper test is the circular version of the Kolmogorov- nization that vanishes as soon as the phase of o_scillator 2is
Smimov test(see Secs. IllD and Il E Unlike the CT  @dapted to the phase of oscillatoffligs. i) and 9j)].
Kuiper-test, the CT Kolmogorov-Smirov test is no appro- DPUue to the antiphase CT clustering, the averaged signal
priate method for detecting stimulus-locked dynamics. Phe ©f oscillator 1 vanishegFig. Xd)], whereas the reset of os-
value from Eq.(35) obtained with the CT Kolmogorov- cillator 2 is C(_)nnected with a nonvanishing averaged re-
Smirnov test displays artificial oscillations that are not re-SPONse ok, [Fig. (h)].
lated to the stimulus-locked process under consideration
[Figs. &e) and 8m)]. The origin of these oscillations is ex- |x. NEITHER DIRECT CT AVERAGED RESPONSE NOR
plained in Sec. X. In particular, due to these oscillations the TRANSMISSION OF THE CT AVERAGED
epoch with CT response three clustering is not detected as a RESPONSE
whole [Fig. 8m)]. Rather, during this epoch lggb,) from ) ) o
Eq. (35), the base 10 logarithm of the value of the CT The same stimulus(¢;) =1 cog2y) is administered to
Kolmogorov-Smirnov test, oscillates around its first pre-oscillator 1 as in Sec. VIII. This causes an antiphase CT
stimulus percentile. response clusterinffFig. 10@)], which is detected with the

antiphase CT clustering index from Eq.(21) [Fig. 1Qc)],
but not with the resetting index from Eq.(20) [Fig. 1Qb)].

VIIl. NO DIRECT CT AVERAGED RESPONSE, BUT Unlike in Sec. VI, the two oscillators are 1:1 coupled, so

TRANSMISSION OF THE CT AVERAGED RESPONSE that' there is only one stabl_e phase relation between the two
oscillators. Hence, the antiphase CT response clustering is

In biological systems the response to a stimulus often detransmitted onto oscillator Figs. 1Qe) and 1@g)]. Because
pends on the phase of the oscillation at which the stimulus isf the antiphase CT response clustering the averaged signals
administered3,5]. For instance, in spinal cord physiology 7] from Eq. (1) of both oscillators vanish.
there is the so-called reflex reversal, which means that de- There are numerous other suitable combinations of cou-
pending on the initial phase, a network of oscillatory neurongling mechanism and stimulation mechanism for which both
may generate antiphase responses, i.e., either an excitationasgcillators have no averaged response. For instance, in case
the flexor muscle or an excitation of the extensor muscleof a 2:3 coupling, administration of a stimuluS(¢;)
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w1/ (2m)=1.5, w,/(27)=2.99,D=1, 1=40, =0, t,;,=16 [see Eq.
(16)], stimulus duration =0.15, and number of stimu#i200. Re-
sults are stable with respect to variationd detween 50 and 2000
and more. Phase resetting cur\yg'ss and(k)]: (j) ¢1 is plotted over
¢1, (k) ¢2 is plotted over¢2, ¢1 =¢;(0) is the phase of thgth
oscillator at the beginning of the stlmulatlom is the phase of
oscillator 1 at the end of the stlmulatloaﬁ2 ot 2)) is the phase
of oscillator 2 at a time during its res[af:2 0.87, sedf)].
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=1 cog2¢,) causes an antiphase CT response clustering, $a(t+ m) =[t+e&p Jmod1l, (52)
which via transmission shows up as CT response three clus-
tering. bolt+ 1) = [t+Adp+ e, Jmodd, (53)

for k=1,... |, whereA¢ is the mean phase difference be-
tween the responses of the two oscillators, @]Q}Lzl is
constant and normally distributed with variance 1 for

To illustrate and summarize important features of the data&1,2. By varying ¢ | modify the variance of the normal
analysis techniques from Secs. Ill and IV, they are applied taistributions of the responses. While the tihencreases
noise-free, idealized responses. These artificial responses drem 0 to 1, the CT distribution of the phase of each oscil-
not generated by the model given by E¢3) and (4), but  lator, {¢;(t+7)}-1 ., from Eq.(17), is shifted through one
simply defined in order to reveal advantages and drawbacksycle [Figs. 1Xa) and 11b)]. A¢ is chosen to be equal to
of the different data analysis methods. | consider an en.25, where the features of the CT analysis methods dis-
semble of responses of both oscillators given by cussed below are independent of the choice ¢f

X. COMPARISON OF THE CT DATA ANALYSIS
TECHNIQUES WITH SYNTHETIC RESPONSES
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responses of each single oscillator as well as their interde-
pendence have to be constant, too.

Univariate measuredAccording to their definition, the re-
setting indicesp; and p, from Eq. (20) are invariant with
respect to phase shifts of the CT distributicie;(t
+ T lk=1,..; and, thus, constant for all times=[0, 1] [Figs.
11(d) and 11e)].

In contrast, the entropy based stimulus locking indiees
and u, from Eq.(25) display oscillations that are due to the
binning of the CT distributions. The binning is necessary for
the calculation of the entropy. However, such oscillations
occur predominantly for sharp CT distributiofise., for &
=0.001, blue ling[Figs. 11g) and 11h)].

The P values of the CT Kolmogorov-Smirnov test display
an artificial oscillation with period 1, i.e., with the same pe-
riod as the oscillation under studyigs. 11j) and 11k)].
This oscillation is strongest for sharp CT distributiofss
=0.001, blue ling but it is also present for smooth CT dis-
tributions(e=1, green ling The oscillation of thé® value of
the CT Kolmogorov-Smirnov test is caused by an oscillation
of D, the maximum value of the absolute difference between
the two cumulative distribution functions from E@2) (not
shown due to space constraintBy the way, the artificial
oscillations of theP values of the CT Kolmogorov-Smirnov
test are also observed when applying this method to signals
generated by the model from Ed8) and(4) [Figs. §e) and
8(m) and discussions in Sec. VIIE

In contrast, theP values of the CT Kuiper test are invari-
ant with respect to a phase shift of the CT distribution of the
phase. Consequently, tievalues of the CT Kuiper test are
constant for all time$ € [0, 1] [Figs. 1im) and 11n)]. Con-
sequently, also when applied to numerical signals stemming

(OJ - from Eqs.(3) and (4), the CT Kuiper test produces no arti-
—os ] ficial oscillations[Figs. §d) and §l)].
S 4 . . . - - By definition, the CT averaged signalsandx, from Eq.
=2 i

(1) oscillate and run through one period while the CT distri-
bution of the phase is shifted through one peliBijs. 11p)

FIG. 10. A strong stimulusS(¢;)=I cog2y4) from Eq. (3 and 11g)].
causes an antiphase %T responsel/félusterlng gfl oscnllatorql E/vzuch by The CT standard deV'at'OQJ from Eq. (41) is (nearly
transmission via the 1:1 coupling causes an antiphase CT responQQnStant in time only for nearly vanishing variance of the
clustering of oscillator 2. CT distributions from E@L7): {¢y(t ~ e€SPonses, i.e., for close to O[Figs. 11s) and 11t), blue
+mler. ) i @, {da(t+Ther.  in (€), and{ey 1(t+ Ther. Imtlag].On thg cqntrary, for larger v_alues ofone observes_ an
in (i) (0 is black and maximal values are whiténdices from Egs. ~ artificial oscillation ofe; with a period ofT/2, whereT=1 is
(19~21): py in (b), ay in (), p, in (f), @ in (g), ando 1 in (). CT  the period of the synthetic oscillators. This oscillation occurs
averaged signals from E¢l): x; in (d) andX, in (h). Same format  independently of the choice af¢ from Eq. (53). The CT
as in Fig. 2. Prestimulus time window used for calculating the sig-standard deviatiog; attains its greatest values at times when
nificance levels{t,,0[=[-8,(. Parameters of Eq$3) and (4): K the corresponding CT averaged S|gnqills close to zero
=3.5,n=1,m=1, w/(2m)=1.5, w,/ (2m)=1.49,D=1,1=40, =0,  crossings. The artificial oscillations gf are also observed in
t,in=16 [see Eq.(16)], stimulus duration =0.15, and number of numerical simulations of Eq¥3) and (4) [Figs. 1b) and
stimuli 1=200. Results are stable with respect to variationd of 7(d)].
between 50 and 2000 and more. Bivariate measuresiAs already mentioned, the phase dif-
ferenceg, ((t+7) of all responsek=1,... | remains con-
stant in timet. Consequentlyj¢; ;(t+ rk)}k 1., the CT dls—
Note, for each oscillator the CT standard deviationyipytion of the 1:1 phase difference from EqL7),
(modulo ) of the phases¢(t+7) of all responsesk  constant in time, too. Therefore, the 1:1 synchronlzanon in-
.| is constant in timgFigs. 1%a) and 11b)]. Further-  dex oy ; from Eq. (19) [Fig. 11(f)], the entropy based 1:1
more, the phase difference, ;(t+7) of all responsesk  synchronization indexy; ; from Eq.(26) [Fig. 11i)], the P
=1,...J] is constant in timet [Fig. 11(c)]. Accordingly, value from Eq(36) of the CT Kolmogorov-Smirnov test for
guantities measuring the extent of the stimulus locking of thehe CT distribution of the 1:1 phase differendég. 11(1)],

Time [arb. units]
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FIG. 11.(Color) To demonstrate the phase dependence of particular CT data analysis techniques, the CT methods from Secs. Il and IV
are applied to noise-free, idealized responses, defined by(E2)sand(53). These artificial responses are not generated by the model from
Egs.(3) and(4). Rather, by definition they are given lay(t+7) =[t+e&; ,] mod 1 ande,(t+7) =[t+Ad+eé, ] mod 1 withA¢=0.25 for
k=1,...], Where{gj-k}'k:l is constant and normally distributed with variance 1, ard.01 (blue ling, 0.1 (red line), 1 (green ling. Note,
the period of bothg, and ¢, equals 1. CT distributions from E@l7) for e=0.1 are shown as time-dependent histogramg;cdnd ¢; ;
calculated across trials for each timeelative to stimulus onset within the time winddwy, tp]: {1 (t+ i) bk=1.. ) IN (@), {Po(t+ T k=1 iN
(b), and{epq 1(t+ 1) }k=1,. ., In (€) [color scale ranges from dark blgeero, blue, light blue, green, yellow, orange, red to crimgpraximal
valueg]. Resetting indicep; and p, from Eq. (20) in (d) and (e); n:m synchronization indexr; ; from Eq. (19) in (f); entropy based
stimulus locking indicegt; andu, from Eq.(25) in (g) and(h); entropy based: m synchronization index; ; from Eq.(26) in (i); base 10
logarithm of theP values of the CT Kolmogorov-Smirnov test for randomness;ddg) and logq(b,) from Eq.(35) for the CT distribution
of the phases iij) and(k); log;o(Bn ) from Eq.(36) for the CT distribution of ther:m phase difference id); base 10 logarithm of the
values of the CT Kuiper test for randomness: g;) and logq(p,) from Eq. (39) for the CT distribution of the phases {(m) and (n);
l0010(Pm) from Eq.(40) for the CT distribution of then: m phase difference ifo); CT averaged signals; andx, from Eqg.(1) in (p) and
(9), CT cross correlatio from Eq.(42) in (r), CT standard deviationg; andg, from Eq.(41) in (s) and(t), and CT sign cross correlation
Sfrom Eg.(43) in (u).

and theP value from Eq.(40) of the CT Kuiper test for the 11(r)], and the CTSCCS from Eq.(43) [Fig. 1u)], of these
CT distribution of the 1:1 phase differen¢Big. 11(0)] are  synthetic stimulus-locked responses “artificially” oscillate
constant for all timeg [0, 1]. Note, for time varying CT  with increasing timet, i.e., with increasing phaseg; al-
distributions of the 1:1 phase differenge ; and theP value  though the phase difference, , remains constant. These
of the CT Kolmogorov-Smirnov test for the CT distribution oscillations occur for all values of the phase differedag.
of the 1:1 phase difference produce the same artificial oscilFor e=0 [blue lines in Figs. 1) and 11u)], C andSare =1
lations as in the case of the univariate analysis explainedr =-1 if the signals,=cog2m¢,) andx, have the same or
above. different sign, respectivelyC and S vanish whenx; and x,
Although the CT distribution of the 1:1 phase difference have zero crossings. A constant gitter of the phdsesO,
remains constant in time, the CTCC,from Eq.(42) [Fig.  red and green lines in Figs. (1 and 1%u)] smoothens the
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changes ofC and S around the zero crossings, so that oscil-Eqg. (1). Correspondingly, with respect to the standard aver-
lations with twice the oscillators’ frequency occur—althoughaged response, there are three different cases, where CT av-
the phase difference, , of all pairs of responses is constant. eraging fails.
CTSCC and CTCC nearly coincide. Applied to signals stem- (i) Only the directly stimulated oscillator shows an aver-
ming from simulations of the model given by Eq8) and aged response, and there is no transmission of the averaged
(4), the time courses of both CTCC and CTSCC are practivresponségSec. VlI). Interestingly, the antiphase CT response
cally the saménot shown due to space constrajnis par-  clustering is not only detected with the stochastic phase re-
ticular, CTSCC is not superior to CTCC with respect to thesetting analysigFig. 5), but this data analysis approach re-
artificial oscillations that are not related to stimulus-lockedveals striking similarities between qualitatively different
synchronization. transmission processes: The normalized transmission time
between the reset of oscillator 1 and the CT response clus-
tering of oscillator 2 from Eq(50) depends oK in a similar
Xl. DISCUSSION way as the normalized transmission time of the reset from
In this paper, | have presented a model which allows oné&d- (44) in case of a transmitted res@ompare Figs. 3 and
to study basic transmission properties of stimulus-locked reb)- - ) ) )
sponses in two coupled phase oscillators, where only one (i) The averaged response is not observed in the directly
oscillator is stimulated. Furthermore, | have explained howstimulated oscillator, but in the oscillator coupled taSec.
to detect such dynamics reliably with data analysis techVIll)- . _ .
niques based on stochastic phase resettSeg. Ill). The (iii) Neither the directly stimulated nor the other oscilla-
major results are the following. tor displays an averaged respornsec. 1X). .
@ In 1:1 coupled phase oscillators the transmission For the study of the transmission time, the coupling
time of the CT averaged responses, i.e., the difference itrength was restricted to values up to (F8gs. 3 and &
time between the maxima of the CT averaged responses &fiven the model parameters used in Figs. 3 and _6, \(alues of
both oscillators, directly corresponds to the phase differenck greater than 15 lead to a very strong synchronization con-
in the stable synchronized state given by EB) with inte-  hected with a sharply peaked CT distributicienm(t
ger multiples of the oscillators’ mean period added to it,* 7Wik=1....;- Sharp distributions of this kind are typically not
where the integer value of added periods depends on thebserved in biological data, neither under healthy nor under
coupling strength(Fig. 3, Sec. V. Thus, the transmission pathological situation$53,54.
time of the averaged responses primarily corresponds to fea- The coupling in Eqs(3) and(4) is symmetrical. All of the
tures of the coupling mechanism and the detuning. In pardynamical phenomena presented in this paper occur also in
ticular, the transmission time of the CT averaged responses f§€ case of nonidentical coupling strength. Obviously, the
not a quantity that reflects the time elapsing due to the stimuonly necessary condition is that the oscillator, which is not
lus’ action being transmitted between the two oscillatorsStimulated, is coupled to the oscillator, which is stimulated.
This contradicts the assumption used in the evoked responé&herwise there is no way for the stimulus’ effect to be trans-
literature[6,10,11,26. In contrast, with the stochastic phase mitted.
resetting analysis from Sec. I[see Eq.(44)] the transmis- By the same token, also for nonsymmetric phase shifts
sion time of the stimulus-locked responses is reliably asf:# 6, instead of¢ in the sine coupling terms of Eq) and
sessed by detecting the time passing by between the maxim@). one observes the same dynamical phenomena as pre-
resets of both oscillators. In general, form coupling the ~ sented in this paper. Also, the data analysis from Sec. IlI
transmission time is determined by detecting the time elapsworks for all types of nonsymmetric phase shifts# ¢, as
ing between the maximal response events of both oscillatoré) the symmetric case. However, there is one special case
e.g., the maximal reset of oscillator 1 and the maximal CcToccurring for symmetric couplingas in Egs.(3) and (4)]
response clustering of oscillator Bee Eq.(50) in Sec. With 6;—6,=m modulo 2r. In this case the model equation
VIIA]. reads
(b) n:m coupling is common in the nervous system. i
For instance, there are several interacting brain rhythms such 1 = w1 = K sin(nygy — mys, + ;) + X()S(¢y) + F4(1),
as a rhythm (around 10 Hz and 8 rhythm (around 20 Hy, (54)
which have am:m relationship of their dominant frequen-
cies, wheren andm are small integer$6,26]. In the model .
given by Eqgs(3) and(4), n:m coupling (with n# 1 and/or o = wy = K sin(Mmi, — Ny — 6,) + Fy(1). (55)
m= 1 andn# m) typically leads to a bistability or multista- ) ) ] )
bility of stable synchronized states of the two-phase oscillaBoth couplings have opposite tendencies which, due to the
tors (modulo 27), although a simple in-phase synchronizing SYmmetric coupling strength, remain balgnced: _No synchro-
coupling of lowest order is usegee Secs. Il B and VI For nization occurs under quntgneous cqndltlons, |.e.xf=90.
this reason, after stimulation the two oscillators may ap-Furthermore, for nonvanishing detunimgo,~maw, the in-
proach gqualitatively different stable states across trials. Constantaneous frequencies of both oscillatafg,and i, un-
sequently, in twan: m coupled phase oscillators either one or dergo oscillations. Hence, for nonvanishing detuning the in-
both oscillators may generate an antiphase CT response clugraction between the two oscillators leads to a frequency
tering, which cannot be detected with the CT averaging fronmodulation instead of a phase synchronization. In the sim-
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plest case, fon=m=1, pulsatile stimulation of oscillator 1 decrease in symmetry of the antiphase CT clusterij(g)

(as studied in Sec. Meads to a reset which by transmission decreasegsee Fig. 7 in Ref[29] and Sec. I1].

causes a reset of oscillator 2. In general, there is transmission |n circular statistics formula for skewness and kurtosis,
of the stimulus’ action without synchronization. Since thisj.e., for the third and the fourth moment, of a circular distri-
phenomenon occurs only for particular parameter valuegution have been derivd®3,57. To introduce mean phases

(symmetric coupling and), - 6,= modulo 2r), a detailed A" pelonging to the stimulus locking indices from E8),
description will be presented elsewhere, in order not to over; rewrite this formula and obtain

load the present paper.

Note, there is a fundamental difference between the con- ) e 1 ! )
cept of stimulus-locked synchronization used in this study on AT (Oexdiaf(t)] = TZ exdiv2ri(nc+1)].  (56)
the one hand and the concept of stationary or quasistationary k=1
stochastic phase synchronization on the other hand. Stochas- With this, the time-dependent skewnes@) of the CT
tic phase synchronization refers to processes which are ngfstribution of the normalized phase of oscillatpr{¢>j(t
transient, but evolve on a long time scale, i.e., for time +,)1 | from Eq. (17), reads
—o0, The typical scenario of stochastic phase synchroniza-
tion is given by two self-sustained oscillators without any 5(t) = AP (®)sin [A7 (1) - 24P (1], (57)
pulsatile stimulation. The basic feature of stochastic phas&ef_ [33]. s(t) vanishes if the CT distribution{t

synchronization is that two oscillators are able to maintain a . : : .
+ T k=1, 1S Symmetric around its peak at tinie

stable phase relationship during a long period of time, al- : .
though they are subject to random forces. Accordingly, sto- The t|me-d§pendent kurtosl§(t) qf the CT d|str|but|9n
sthe normalized phase of oscillatpr {¢;(t+ 7i)}=1,.. ), IS

chastic phase synchronization was defined as appearancecg
one or more prominent peaks in the distribution of the phas@iven by
difference during a sufficiently long observatifsb,5q. RGN @4y — oA (D

In contrast, the analysis of stimulus-locked dynamics of (=07 (Mcos[A7(0 = 24,70, (58)
the phase differeng&ec. 1ll) is by no means restricted to the Ref. [33]. The kurtosis assesses to what extent a distribution
detection of stimulus-locked phase synchronized states s relatively flat or sharply peaked. One obtains an alternative
states, with rather constantm phase difference in time plus measure for the kurtosis by the replacemeki(t)
possible 2r jumps, which are time locked to the stimulus. —>kj(t)/[A§1)(t)]3, where the denominator serves to eliminate
Rather, then:m phase differencep,n may also undergo possible effects caused by dispers[&]. A}l)(t) is the CT
stimulus-locked transients during whigh, , varies in time.  mean angular deviation for a unimodal CT distribution de-
For instance, during the prestimulus epoch there may be affheqd by Eq.(23). In a similar way, skewness and kurtosis
in-phase synchronization. The stimulus causes an antiphaggn pe determined for the CT distribution of them phase
synchronization, V\{hich via a branc_hingwo clustering difference {en m(t+ bty from Eq.(17).
comes back to an in-phase synchronization ag2#-3Q. It is important to note that skewness and kurtosis are

Using formulas from c'erl(JJ;ar statisti¢83], in Sec. lll the  yeaningful only for unimodal distributiori83]. The present
CT mean angular deviatiofy;(t) for a unimodal CT distri-  stydy is not focussing on how a stimulus leads to transient
bution {¢;(t+7)}k=1,..; and the CT mean angular deviation changes of particular features of the shape of unimodal dis-
A}z)(t) for an antiphase bimodal CT distributiofi;(t tributions. Rather, more drastic effect such as transitions be-
+7 1., have been introduced as alternatives to thetween uniform, unimodal, and multimodal distributions were
stimulus locking indices\\”(t) and xj@z)(t) [Egs.(18), (20),  studied. For this reason | did not determine skewness and
and(23)]. By the same token, the CT mean angular deviatiorkurtosis. However, in other numerical or experimental appli-
Y, (1) for a unimodal CT distributiog,, n(t+ )1 . is cat|ons.one might proflt fr_om these additional measures.
an alternative to the: m synchronization index, (t) [Eqs. Previously, transient stimulus-locked phase dynamics and

(19) and (24)]. Applied to the signals under consideration, Synchronization have been investigated in two-phase oscilla-
A}V)(t) and )\}V)(t) (v=1,2 as well asY,(t) and oy (1) tors that were both stimulated, either simultaneo(i2B;,29

provide practically the same information, respectively. or at different tlmes(w!th a delay that did not exceed the
time scale of the transient§30]. Let us compare the results

In this context it should be mentioned thlaf)(t) and f1h . d ith th <cion d !
A(Z)(t) share a relevant drawback. Both are not specificall . es€ previous studies with the transmission dynamics
j : P ¥ound in the present study.

detecting an antiphase CT clustering. Not only an antiphase y5imark of transmissioriThe maximal response of oscil-
CT clustering[Figs. §1) and §p)], but also a simple reset |4ior 2 in terms of a reset or a CT response clustering comes
[legs. %c) and gg)] is related to significantly large values of 4fier hoth the maximal response of oscillator 1 and the tran-
AE '(t) and, correspondingly, to significantly small values of sient stimulus-locked desynchronization/synchronization be-
Agz)(t)- For this reason, the antiphase CT clustering indexween the two oscillators, at least for values of the coupling
a;(t) from Eq. (21) has been introducefR9]. «;(t) specifi-  strengthK that are reasonable from a biological standpoint,
cally detects two symmetric antiphase peaks of the distribue.g., forK up to, say, §Figs. 2 and R In contrast, if both

tion {¢;(t+7)}k=1, ) at timet. Only an antiphase CT clus- oscillators are stimulated at the same time, the resets of both
tering [Fig. 5(m)]—but not a simple resefFig. 5d)]—is  oscillators as well as the transient desynchronization/
connected with significantly large values ef(t). With a  synchronization occur at the same time.
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The delayed occurrence of the reset or the CT responsgse the resetting indey; from Eqg. (20), the CT response
clustering of the not directly stimulated oscillator is an im- clustering indicesy; and 3; from Egs.(21) and(22), and the
portant criterion for identifying how the action of a stimulus n:m synchronization indexr, ,, from Eq. (19) to determine
is transmitted within a network of neuronal oscillators. Forthe concrete type of resetting, response clustering, synchro-
instance, in a recent MEG study this criterion made it posnization, or desynchronization, respectively. In analogy to
sible to identify which visual brain areas receive direct inputEgs.(21) and(22), in case ofv equally spaced peaks in the
from the retina and which get the input by transmission viaCT distribution of, e.g., the phasg, and»>3, one can use
the directly stimulated brain areg31]. _ ~ the time-dependent C#-clustering index of thgth oscilla-

Stochastic resonanch‘.both osc_|llators are stimulated ei- 5 defined by )\EV)(t)—)\El)(t) (v=4,5,..). -1< )\J@(t)
ther at'the same or at different timg30)], the CT response .—A(l)(t)sl is fulfilled for all timest, where v Dirac-like
clustering may come after a reset. In detuned oscillators this i . .
type of CT response clustering requires the presence er)nmetr(llc) and equally spaced peaks are connected with
noise. In fact, by varying the noise amplitude, the extent oft; (D =A"()=1.

CT response clustering displays a stochastic resonance, i.e., According to the tests performed on synthetic responses
the response clustering is strongest for an optimal, intermen Sec. X, the CT Kolmogorov-Smirnov test from E¢35)
diate noise amplitud¢28—30. In contrast, the dynamical and(36), the CTCC from Eq(42) and the CTSCC from Eq.
phenomena presented in this paper are not subject to a st@+3) are no appropriate measures for estimating stimulus-
chastic resonance. Rather they occur for vanishing noise, tdocked dynamics, since they produce artificial oscillations
(simulations not shown due to space constraints that are not related to the stimulus-locked dynamics under

Fourier mode based indices vs Shannon entropy basestudy. When applying the entropy based stimulus locking
indices In case both oscillators were stimulated, the indicesndex y; from Eq. (25) as well as the entropy based 1:1
based on the Shannon entropy from E@$) and(26) were  synchronization index; ; from Eq.(26), one has to keep in
not sensitive enough to detect CT response clusteringnind that in case of sharp CT distributions binning-induced
whereas a reset always leads to an increase of these indicaxificial oscillations occuiFigs. 11g) and 11h)]. In par-
beyond the prestimulus levéle., beyond the 99th percentile ticular, in applications to noisy experimental signals, the CT
of the corresponding prestimulus CT distributidi28—3Q. distributions are typically not sharp, so that the binning may,
In contrast, in the present study it is different: Not only ahence, cause no problems.

reset(Fig. 2), but also a CT two clusteringd-ig. 5) as well as The same artificial oscillations as demonstrated in Sec. X
a CT three clusteringFig. 8) lead to an increase of the occur in case of am:m phase relationship. In other words,
corresponding index beyond its prestimulus level. also forn:m synchronization the CT Kolmogorov-Smirnov

In principle, the advantage of the Shannon entropy basetest, the CTCC, and the CTSCC produce similar artificial
indices would be that different types of responses, such as@scillations that are not related to the stimulus-locked dy-
simple reset or different sorts of CT response clusteringnamics(not shown because of space constraiméso, the
could be detected with only one index for each phpse entropy basedn:m synchronization indexz,,, produces
from Eq.(25)] and one index for the phase differenog,,  binning-induced oscillations in case of sharp CT distribu-
from Eg. (26)]. In this sense one could use the Shannortions of then:m phase difference.
entropy based indices as screening indices. If a response of Similar to the resetting indey; from Eq. (20) and the
whatever kind would be detected with the Shannon entropyi:m synchronization indexoy,, from Eq. (19) [Figs.
based indices, the Fourier mode based indices from Eq4.1(d)-11(f)], also the mean angular deviations from Egs.
(18)—«22) could be used to specifically identify the type of (23) and (24), the antiphase CT clustering index from Eq.
responseéreset or the particular sort of CT response cluster{21), and the CT three-clustering index from E&2) cause
ing). However, since in case of two stimulated oscillators theno artificial oscillations. This follows directly from their
Shannon entropy based indices fail in detecting events, andefinitions.
since in an experimental application it need agpriori be For the study of phase resetting in EEG signals in sensory
clear whether there is a transmission or not, the Shannostimulation experiments a quantity has been used which is
entropy based indices should not be used as screening indiomparable to the resetting indgx from Eq. (20), and
ces. which was based on a wavelet transformation and denoted as

The CT Kuiper test as screening tednlike the Shannon “phase-locking factor]9,58]. The results presented here as
entropy based indices, both the CT Kuiper test for randomwvell as previous findingf28—3Q clearly show that one can-
ness of the CT distribution of the phagefrom Eq.(39) and  not use only the resetting indgx from Eq.(20) or only the
the CT Kuiper test for randomness of the CT distribution ofantiphase CT clustering index from Eg. (21) as sort of a
the n:m phase differencep, ,, from Eq. (40) provide robust screening index. Rather, the CT Kuiper tgSec. Il E)
screening tests for stimulus locked dynamics of the phaseerves as screening test, at least for the signals analyzed in
and then:m phase difference. For the numerical signals un-this study. As explained above, the CT Kuiper test detects
der consideration, the CT Kuiper test turned out to be sensistimulus-locked epochs, whereas the specific nature of such
tive enough to detect all sorts of resetting, clustering, andn epochreset, CT response clustering, synchronization, de-
synchronization phenomena considered in this sti#scs.  synchronizationcan be detected with the indices from Sec.
V B, VIIE, and X]. Whenever the poststimuluB values 1ll B. Up to now, only reset and antiphase CT response clus-
from Egs.(39) and(40) leave the prestimulus baseline rangetering have been found in experimental dg@d]. As an al-
(from the first to the 99th prestimulus percentilene can ternative, instead of first applying the CT Kuiper test, one
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could start with a visual inspection of the CT distributions mental data, also the amplitudes of the oscillators have to be
from Eq.(17) and then decide which Fourier based index isstudied. For this, an oscillatory signglt), e.g., a particular
most appropriate. However, such an approach is not feasiblgrain rhythm, is extracted out of a measured signal by means
if thousands of signals, e.g., thousands of currents in differof pandpass filtering. The Hilbert transfomﬁ'(t) of x(t)

ent brain volume elements have to be analyzsee Ref.  yie|ds instantaneous phage(t) and instantaneous amplitude
[31)). A(t) of x;(t) according tOXj(t)+X}_|(t):Aj(t)EXdil[/j(t)] [59].

CT averaging Antiphase CT response clustering cannot . . : .
. : . ... The Hilbert transform is generated by a filter, which causes a
be detected with CT averaging from EQ), especially, if it ghase shift ofw/2 for all frequencies. Alternatively, also a

is close to symmetrical, i.e., if the two antiphase response let h b d for the oh determinati
appear with similar frequency across trials. This holds, inV2V€'€l approach can be used for the phase determination
0]. The amplitudeg\ of the oscillators can, in principle, be

general, and was thus observed not only in the present study, X : . X
but also in case of two stimulated oscillatdi28—3(. In veraged across trials as done in ED. with the signals.

other words, more complex types of responses than a simpfé/ith such an anaI_ysis, however, qualitatively different tran-
reset escape detection with the CT averaging, the standagients of the amplltu_des cannot be detected. It is superior to
analysis tool in medicine and biology. check fo'r CT cIusterlng'of amphtqde responses by use of the

CT standard deviationin case both oscillators are stimu- Stochastic phase resetting analysis from Sec. I1l. To this end,
lated [28—3Q as well as only one oscillator is stimulated similar to Eq.(17) | introduce CT distributions o_f the ampli-
[Figs. 1b) and 7d)], the CT standard deviation displays an tudes with{Aj(t+ )}, ., and evaluate them in a compa-
artificial oscillation with typically twice the frequency of the rable way as defined by Eqgl8) and (19) for the phases.
analyzed oscillatofFigs. 11s) and 11t)]. Accordingly, the ObVIOUSIy, for the phase oscillator model under cop3|der-
CT standard deviation is not appropriate for the analysis oftion there was no need for an amplitude analysis, since the
stimulus-locked responses. amplitude of a phase oscillator is constant.

CT cross correlationAfter a reset of both oscillators the ~ One motivation behind the present study is to reveal basic
CT cross correlation from Eq42) displays artificial oscilla- features of stimulus-locked transient dynamics of two-
tions [28—3Q [Fig. 11r)]. They arise because the CT cross coupled QSC|IIa'§ors. The othgr mo.tlvat|on is to contribute to a
correlation depends not only on the phase difference, but als@ore solid basis for analyzing stimulus-locked responses of
on the phase of each individual oscillator. Here | have deminteracting brain rhythms as measured, e.g., with EEG and
onstrated that the CT cross correlation need not display sudMEG. Actually, the CT stochastic phase resetting analysis
artificial oscillations, provided only one oscillator is reset. from Sec. lll has allowed to show that brain areas may react
However, also in this case the CT cross correlation is not0 Simple visual stimuli in qualitatively different ways across
able to detect relevant transient phenomena, such as the prals [31]. This finding illustrates the limitations of the stan-
nounced stimulus-locked transient desynchronization showfard CT analysis techniqueSec. IV) used in medicine and
in Figs. 5i)-5(Kk) [cf. Fig. Ae)]. Thus, CT cross correlation is Neuroscience.
not a reliable method for the analysis of transient stimulus-

locked dynamics. Also, the CT sign cross correlation from ACKNOWLEDGMENTS
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