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A model of two n:m coupled phase oscillators is studied, where both oscillators are subject to random
forces, but only one oscillator is repetitively stimulated with a pulsatile stimulus. The focus of the paper is on
transmission of transient responses as well as transient synchronization and desynchronization, which are
stimulus locked, i.e., tightly time locked to the stimulus. A bistability or multistability of stable synchronized
states of the two-phase oscillators(modulo 2p) occurs due to then:m coupling. Accordingly, after stimulation
the two oscillators may tend to qualitatively different stable states, which leads to a cross-trial(CT) response
clustering(i.e., a switching between qualitatively different poststimulus responses across trials) of either one of
the oscillators or both. A stochastic CT phase resetting analysis allows one to detect such transient responses
and provides a reliable estimation of the transmission time. In contrast, CT averaging(averaging over an
ensemble of responses), CT standard deviation, and CT cross correlation fail in studying the transmission of
such stimulus-locked responses, even in the simpler case of 1:1 coupling. In particular, even though being used
as golden standard for the analysis of evoked responses in medicine and neuroscience, CT averaging typically
causes severe artifacts and misinterpretations.
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I. INTRODUCTION

The impact of stimulation on oscillations and synchroni-
zation processes is of great interest in physics[1], chemistry
[2], biology [3–5], neuroscience, and medicine[6–9]. The
study of transient reactions of neuronal oscillations to pulsa-
tile stimuli is a major approach in neuroscience and a well-
established tool for clinical diagnosis[6,7]. The golden stan-
dard for the univariate analysis of responses of neuronal
oscillations to pulsatile stimuli as measured with electroen-
cephalography(EEG), magnetoencephalography(MEG) or
local field potentials(LFP) is cross-trial averaging, i.e., av-
eraging over an ensemble of poststimulus responses
[6,10,11]. Thecross-trial (CT) averaged signalof the signal
xj of the j th oscillator reads

x̄jstd =
1

l
o
k=1

l

xjstk + td, s1d

where the stimulus is repetitively administered atl different
onset timest1,t2, . . . ,tl. The assumption behind the trig-
gered averaging is that the responsexj can be decomposed
into a stereotypical evoked responseej, which follows the
stimulus with a constant delay, plus additive Gaussian noise
j j, so that

xjstk + td = ejstd + j jstk + td s2d

is fulfilled [10,11]. In this case averaging improves the
signal-to-noise ratio byÎl, where the number of responsesl
typically equals 20–300, andx̄jstd→ejstd for l →` [10,11].

The analysis of evoked responses is still a matter of vivid
debate. One issue is the estimation of the time varying fre-

quency spectrum of evoked responses. For instance, in the
context of self-organized motor control processes[12], simi-
lar experiments led to contradictory estimates of conven-
tional power spectra of transient responses[13–15]. It was
suggested that these discrepancies might be due to artifacts
arising when simple power spectra are calculated for tran-
sient responses[14]. In contrast, more sophisticated ap-
proaches to spectral estimation and denoising of transient
responses are based on autoregressive moving average mod-
els [16], on the Wiener filter[17–20], and on the wavelet
transform[21–25].

Another fundamental issue of evoked responses is the es-
timation of their latencies. To study neural information pro-
cessing and, in particular, the flow of information in interact-
ing neural populations, it is important to analyze the
transmission of stimulus-locked responses within networks
of interacting neural populations. Along the lines of the av-
eraging approach, transmission is assessed by identifying the
timing sequence of stimulus-locked responses of different
neuronal populations. This is typically done by determining
the difference in time between the occurrence of marker
events(such as maxima or minima) of the individual aver-
aged responses belonging to different neuronal populations
[6,10,11].

However, the averaging assumption from Eq.(2) is vio-
lated by stimulated brain activity for several reasons.

(i) Ongoing oscillations are abundant in the brain[26].
Such oscillators are not “silent” during the prestimulus pe-
riod.

(ii ) Evoked responses, detected with CT averaging, result
from reorganizing part of such ongoing oscillations, espe-
cially by resetting their phase dynamics[8,9].

(iii ) Noise is inevitably inherent in neuronal action and,
hence, cannot be modeled appropriately by simply adding it
to the deterministic signal[27].

(iv) Coupled phase oscillators, subject to pulsatile stimu-*Email address: p.tass@fz-juelich.de
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lation and noise, may display an antiphase CT response clus-
tering, occurring after a stereotypical reset[28–30]. CT re-
sponse clustering means that the oscillators switch between
qualitatively different responses across trials. In a recent
MEG study it has been shown that simple visual stimuli
make neuronal populations generate a late antiphase CT re-
sponse clustering after an early stereotypical reset[31]. The
antiphase CT response clustering cannot be detected with CT
averaging as defined by Eq.(1), but with a CT analysis based
on stochastic phase resetting(see Sec. III).

Accordingly, stimulated neuronal oscillations share basic
dynamical features with stimulated phase oscillators(for
more details, see Sec. IV A). This paper is dedicated to study
transmission of stimulus-locked responses in two coupled
phase oscillators, with only one oscillator being stimulated.
The motivation behind this approach is to investigate dy-
namical processes, which are essential for neuronal informa-
tion processing, in a reasonably simple oscillator model. The
insights into the transmission dynamics can then be used for
the analysis of experimental data. This approach is intended
to make the analysis of evoked response signals less specu-
lative.

In this paper transient dynamical processes will be pre-
sented. It will be explained how they can be detected reliably
with the CT stochastic phase resetting analysis(Sec. III). In
contrast, when applied to study transmission of stimulus-
locked responses, the golden standard for such analysis in
medicine and neuroscience, the CT averaging from Eq.(1),
fails massively. This underlines the importance of using ap-
propriate data analysis techniques as described in Sec. III.

II. STOCHASTIC MODEL

A. Two phase oscillators

I consider a model of two phase oscillators with phases
c1, c2 and constant amplitudes obeying

ċ1 = v1 − K sinsnc1 − mc2 + ud + XstdSsc1d + F1std, s3d

ċ2 = v2 − K sinsmc2 − nc1 − ud + F2std. s4d

The eigenfrequenciesv1 andv2 fulfill

nv1 − mv2 = g s5d

with detuningg. K is a positive coupling constant, and the
coupling is chosen to be symmetrical, i.e., both oscillators
are coupled to each other with equal strength. All of the
phenomena and mechanisms presented in this paper occur
also in the case of nonidentical coupling strength, provided
oscillator 2 is coupled to oscillator 1; otherwise the dynami-
cal phenomena studied below cannot be transmitted from
oscillator 1 to oscillator 2. Only oscillator 1 is stimulated,
where the stimulus is modeled by a 2p-periodic, time-
independent functionSsc jd=Ssc j +2pd. In several fields of
the natural sciences, especially in biology, the effect of a

stimulus is phase dependent[3,5]. Switching on and off the
stimulus of oscillator 1 is modeled by

Xstd = H1 stimulus is on at timet

0 stimulus is off at timet
. s6d

The random forcesF1 andF2 are Gaussian white noise ful-
filling kFjstdl=0 and kFjstdFkst̃dl=Dd jkdst− t̃d with constant
noise amplitudeD. Equations(3) and (4) may serve as a
minimal model for two neurons[5], one of them being elec-
trically stimulated, or as a minimal model for two interacting
neuronal populations, where only one of them is directly
affected by a sensory stimulus as discussed below. The am-
plitude of both oscillators is set equal to 1, so that the signal
of the j th phase oscillator reads

xjstd = cosc jstd. s7d

B. Spontaneous dynamics

Let me dwell on the oscillators’ synchronization behavior
occurring spontaneously, i.e., without stimulation. For this I
setX=0 in Eq.(3). The evolution equation of then:m phase
difference

Fn,m = nc1 − mc2 s8d

reads

Ḟn,m = g − sn + mdK sinsFn,m + ud + Fstd, s9d

where g is the detuning from Eq.(5). The random force
Fstd=nF1std−mF2std is Gaussian white noise fulfilling
kFstdl=0 andkFstdFst̃dl=sn2+m2dDdst− t̃d.

In the noise-free casesD=0d the dynamics is governed by
a potential

VsFn,md = −E
c

Fn,m

Gsjddj, s10d

where GsFn,md=g−sn+mdK sinsFn,m+ud, and c is a con-
stant, so that

Ḟn,m = −
dVsFn,md

dFn,m
. s11d

With suitably chosenc one gets

VsFn,md = − gFn,m − sn + mdK cossFn,m + ud. s12d

For unv1−mv2u, sn+mdK the potentialV has a local maxi-
mum and a local minimum, which correspond to an unstable
fixed point ofFn,m and a stable fixed point ofFn,m, denoted
by Fn,m

u andFn,m
s , respectively. Maximum and minimum are

determined by settingdV/dFn,m=0, which with Eq. (5)
yields

Fn,m
u,s = arcsin

nv1 − mv2

sn + mdK
− u, s13d

where one of the two solutions of the arcsin belongs to the
unstable fixed point and the other one to the stable fixed
point. The dynamics given by Eq.(11) corresponds to an
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overdamped motion of a particle in the potentialV. Fn,m
moves in such a way that it minimizesVsFn,md, and Fn,m

stops only whendV/dFn,m vanishes(see Ref.[1] and Chap.
9 in Ref. [32]).

With respect to the stable synchronized state, there is an
important difference between 1:1 coupling andn:m cou-
pling (with nÞ1 and/ormÞ1 andnÞm): In case of the 1:1
couplingF1,1

s belongs to one stable solution of the phasesc1
and c2 (modulo 2p). In contrast, withn:m coupling Fn,m

s

corresponds to more than only one stable solution of the
phasesc1 andc2 (modulo 2p). For instance, withn=1 and
m=2, for givenc1 the two stable solutions forc2 readc2
=sc1−Fn,m

s d /2 and c2=sc1−Fn,m
s d /2+p. Analogously, in

case ofn=1 andm=3, for givenc1 the three stable solutions
of c2 readc2=sc1−Fn,m

s d /3, c2=sc1−Fn,m
s d /3+2p /3, and

c2=sc1−Fn,m
s d /3+4p /3. This bistability and multistability

is important for understanding the poststimulus responses
studied below(Secs. VII–IX).

Adding noise to the systemsD.0d changes the situation
completely. The trajectory of the particle can no longer be
predicted. Rather the particle’s dynamics has to be described
in a probabilistic sense. For instance, with the Fokker-Planck
equation belonging to Eq.(9) the time course of the prob-
ability densitypsFn,m,td can be determined.psFn,m,tddFn,m

provides the probability of findingFn,m in the interval
fFn,m,Fn,m+dFn,mg (see Ref.[1] and Chap. 9 in Ref.[32]).
For an analysis of the influence of pulsatile stimulation[X
=1 in Eq.(3)] on the noisy dynamics ofFn,m in the double-
well potentialV from Eq. (12), I refer to Refs.[29,30].

III. CROSS-TRIAL ANALYSIS BASED ON STOCHASTIC
PHASE RESETTING

A. Cross-trial analysis

I introducenormalized phases

f jstd =
c jstd
2p

mod 1 s j = 1,2d s14d

and thenormalized cyclic n:m phase difference

wn,mstd =
nc1std − mc2std

2p
mod 1. s15d

I want to detect whether in an ensemble of responses to the
stimulus there are epochs during which the phasesf1, f2
and/or the phase differencewn,m display a stereotypical,
tightly stimulus-locked time course. To this end, I deliver a
series ofl identical stimuli to oscillator 1 at random times
t1,t2, . . . ,tl as shown in Fig. 1. The length of theinterstimu-
lus intervals(ISI) is randomized according to

tk+1 − tk = twin + zk, s16d

where the minimal ISI,twin, is constant and large compared
to the stimulation duration as well as the time scale of the
transient dynamics.zk is uniformly distributed inf0,k2p /vg,
wherek is a small integer. I attach an identical time window
fta,tbg to each stimulus(ta,0, tb.0, Fig. 1). Each window
has a time axist8, wheret8P fta,tbg. The onset of the stimu-

lus in each window lies int8=0. The window lengthtb− ta is
smaller than the length of the ISIstb− ta, twind, but large
compared to the time scale of the transient dynamics.

For the sake of simplicity I drop the prime int8, so that
from now on t denotes the time axis of the window. To
evaluate the dynamics of the ensemble of stimulus-locked
responses statistically, I collect the values forf j and wn,m
across all trials for each timet relative to stimulus onset.
Accordingly, for each timetP fta,tbg I introduce the time-
dependentCT distributionsof the normalized phases from
Eq. (14) and the cyclicn:m phase difference from Eq.(15)
by

hf jst + tkdjk=1,. . .,l, hwn,mst + tkdjk=1,. . .,l . s17d

The time course off j andwn,m is perfectly stimulus locked
at timet if the corresponding CT distributions from Eq.(17)
are Dirac-like distributions, i.e.,f jst+tid=f jst+tkd and
wn,mst+tid=wn,mst+tkd for all i ,k=1, . . . ,l. If f j andwn,m are
not at all stimulus locked at timet, these distributions are
uniform.

FIG. 1. The cross-trial analysis is illustrated schematically. A
series ofl identical stimuli is administered to oscillator 1 at random
timest1,t2, . . . ,tl. Onsets of the stimuli of oscillator 1 are indicated
by solid vertical lines. An identical time windowfta,tbg (with ta,0,
tb.0) is attached to each stimulus and indicated by a shaded region
at the top of each panel. The signalsx1std=cosf2pf1stdg andx2std
=cosf2pf2stdg defined by Eq.(7) are displayed in(a) and(b). The
phasesf1 and f2 from Eq. (14) are shown in(c) and (d). The
normalized cyclic 1:1 phase differencew1,1 from Eq.(15) is shown
in (e). Continuous variations aroundw1,1=0 appear as abrupt jumps
between 0 and 1 becausew1,1=0 and w1,1=1 are identical. The
traces shown are obtained by numerical integration of the model
given by Eqs.(3) and(4) with parameters as in Fig. 5. In this paper
Eqs.(3) and(4) are numerically solved with Euler’s technique and
a time step of 0.0005.
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B. Stimulus-locking indices

The extent of stimulus locking off j andwn,m is quantified
for each timet by means of the time-dependentstimulus-
locking indicesl j

sndstd of f j given by

l j
sndstd = U1

l
o
k=1

l

expfin2pf jstk + tdgU s18d

and then:m synchronization indexsn,mstd of wn,m given by

sn,mstd = U1

l
o
k=1

l

expfi2pwn,mstk + tdgU , s19d

where uyu denotes the modulus ofy, and n is an integer
[28–30]. l j

sndstd detects whetherf j’s CT distribution from
Eq. (17) at timet hasn peaks that are equally spaced inf0,1g
(modulo 1). With sn,mstd I detect whetherwn,m’s CT distribu-
tion from Eq. (17) at time t has one prominent peak. 0
øl j

sndstdø1, 0øsn,mstdø1 are fulfilled for tP fta,tbg and
for all integern. l j

snd andsn,m are the modulus of thenth and
the first Fourier mode of the corresponding CT distributions
from Eq. (17), respectively(see Ref.[5]).

I consider the three leading indices(n=1,2,3) in different
characteristic situations.

(i) If the distribution hf jst+tkdjk=1,. . .,l at time t is uni-
form, l j

sndstd=0 for n=1,2,3.
(ii ) One pronounced peak of the distributionhf jst

+tkdjk=1,. . .,l at time t corresponds to largel j
sndstd for n

=1,2,3.
(iii ) Two pronounced antiphase peaks of the distribution

hf jst+tkdjk=1,. . .,l at time t are characterized by largel l
s2dstd

and smalll j
sndstd for n=1,3.

(iv) Three pronounced and equally spaced peaks of the
distribution hf jst+tkdjk=1,. . .,l at time t are connected with a
largel j

s3dstd and smalll j
sndstd for n=1,2.

Based on Eq.(18) I introduce indices which detect spe-
cific configurations of the CT distribution of the phase: A
resetting stimulus puts an oscillator to a particular phase.
Therefore the indexl j

s1d serves as aresetting indexof the j th
oscillator, denoted by

r jstd = l j
s1dstd. s20d

Two symmetric antiphase peaks of the distributionhf jst
+tkdjk=1,. . .,l at time t are specifically detected with the time-
dependentantiphase CT clustering index of the jth oscillator
defined by

a jstd = l j
s2dstd − l j

s1dstd, s21d

Ref. [30]. −1øa jstdø1 is fulfilled for all timest, where two
Dirac-like symmetric antiphase peaks are related toa jstd=1.
Analogously, three equally spaced symmetric peaks of the
distributionhf jst+tkdjk=1,. . .,l at timet are detected by means
of the time-dependentCT three-clustering index of the jth
oscillator defined by

b jstd = l j
s3dstd − l j

s1dstd. s22d

−1øb jstdø1 is fulfilled for all times t, where three Dirac-
like symmetric and equally spaced peaks are connected with
b jstd=1.

Geometrically speaking, the time-dependentstimulus
locking indicesl j

sndstd of f j from Eq. (18) represent a time-
dependent distance between the origin of the Gaussian plane
and the center of mass of the CT distribution
hexpfin2pf jstk+ tdgjk=1,. . .,l. Inspired by circular statistics
[33], additionally, one can estimate the dispersion of the CT
distribution hexpfin2pf jstk+ tdgjk=1,. . .,l in a complementary
way. For this, I use the formulas for the mean angular devia-
tion of unimodal and antiphase bimodal distributions[34].
This enables one to introduce theCT mean angular deviation
L j

s1dstd for a unimodal CT distributionhf jst+tkdjk=1,. . .,l at
time t and theCT mean angular deviationL j

s2dstd for an
antiphase bimodal CT distributionhf jst+tkdjk=1,. . .,l at time t
defined by

L j
sndstd = fn

Î2f1 − l j
sndstdg, s23d

where f1=1 and f2=0.5. The mean angular deviation is
equivalent to the standard deviation in linear statistics
[33,34]. Analogously, one can introduce theCT mean angu-
lar deviationYn,mstd for a unimodal CT distributionhwn,mst
+tkdjk=1,. . .,l at time t by setting

Yn,mstd = Î2f1 − sn,mstdg. s24d

By definition the mean angular deviations from Eqs.(23) and
(24) are complementary to the corresponding stimulus lock-
ing indices from Eqs.(18) and (19). This will be demon-
strated in Sec. VII B.

Apart from the indices defined by Eqs.(18)–(22), I use
indices based on the Shannon entropy[5,30] in order to
quantify the deviation of the distributionshf jst+tkdjk=1,. . .,l

andhwn,mst+tkdjk=1,. . .,l from a uniform one in a more general
way. The time-dependent entropy basedstimulus locking in-
dexm jstd of f j reads

m jstd =
Smax− Sjstd

Smax
, s25d

whereSjstd=−oi=1
N pi ln pi is the entropy of the distribution

hf jst+tkdjk=1,. . .,l at time t, and pi denotes the relative fre-
quency of findingf jst+tkd within the ith bin. Smax=ln N is
the entropy of a uniform distribution, whereN=expf0.626
+0.4 lnsl −1dg is the optimal number of bins[35], andl is the
number of stimuli administered. 0øm jstdø1 holds for allt,
where m jstd=0 corresponds to a uniform distribution(no
stimulus locking) at timet, whereasm jstd=1 corresponds to a
Dirac-like distribution(perfect stimulus locking) at time t.

The time-dependent entropy basedn:m synchronization
indexhn,mstd of wn,m is given by
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hn,mstd =
Smax− Sn,mstd

Smax
, s26d

where Sn,mstd is the entropy of the distributionhwn,mst
+tkdjk=1,. . .,l at time t.

The first and the 99th percentile of the prestimulus distri-
butions of the indices hr jstdjtPfta,0f, ha jstdjtPfta,0f,
hb jstdjtPfta,0f, hsn,mstdjtPfta,0f, hm jstdjtPfta,0f, hhn,mstdjtPfta,0f,
hL j

sndstdjtPfta,0f, andhYn,mstdjtPfta,0f serve as confidence levels
in order to determine whether a stimulus causes a significant
increase or decrease of the corresponding locking index. For
example, a pronounced reset, i.e., an increase of the stimulus
locking of f j at time t, is considered significant provided
r jstd is greater than the 99th percentile of the prestimulus
distribution hr jstdjtPfta,0f. Correspondingly, a pronounced re-
set leads to a decrease ofL j

s1d below its first percentile(see
Sec. VII B). Significant stimulus-locked synchronization or
desynchronization at timet occurs providedsn,mstd exceeds
the 99th percentile or falls below the first percentile of
hsn,mstdjtPfta,0f. The differences between the above men-
tioned indices will be discussed below.

C. Tests for randomness

In addition to the stimulus locking indices described in
Sec. II B, for the evaluation of the CT distributions from Eq.
(17) I use a statistical approach, which has been developed in
the field of circular statistics[31]. The starting point of this
approach is an observed distribution ofl phases, which will
be denoted by

hC1,C2, . . . ,Clj, s27d

where the phaseC j is unwrapped and not normalized(i.e.,
not divided by 2p) for j =1, . . . ,l. The corresponding circular
distribution reads

hexpsiC1d,expsiC2d, . . . ,expsiCldj. s28d

From the geometrical point of view, the distribution given by
Eq. (28) can be considered as a distribution of unit vectors in
the complex plane. To determine whether this distribution
has a preferred orientation, one determines the mean vector

R exp siQd =
1

l
o
k=1

l

expsiCkd, s29d

whereR is the length andQ is the orientation of the mean
vector. For the sake of illustration, one may assume that each
unit vector is related to a massM located in expsiC jd s j
=1, . . . ,ld. In this case the center of mass is located in
R expsiQd in the complex plane.

A basic task in circular statistics is to study the directed-
ness of the circular distribution from Eq.(28), i.e., to answer
the following question: Is the observed circular distribution
significantly different from randomness. More precisely, is
there statistical evidence of one sidedness or directedness?
Put otherwise, is the location of the center of mass signifi-
cantly different from the origin of the Gaussian plane
sR.0d?

Several statistical tests have been designed which enable
one to test whether there is statistical evidence of directed-
ness in unimodal distributions. Examples of this kind of sta-
tistical tests are the Rayleigh test(see Ref.[33]), the Hodges
and Ajne’s test[36–38], Rao’s spacing test[39], the range
test [40], the x2 test [41], Watson’sUn

2 test [42], and the
Kuiper test[43–46].

The null hypothesis of such tests is that there is random-
ness, i.e., the observed distribution is uniform. Applying such
a test yields theP value, which is the smallest significance
level by which the null hypothesis can be rejected. Accord-
ingly, if the observed distribution is a uniform distribution,
one obtainsP=1. In contrast, if the observed distribution has
one pronounced peak, one gets aP value close to 0.

These tests work well for unimodal distributions, i.e., for
distributions with one peak. In the case of multimodal distri-
butions(distributions with more than one peak) the situation
is different.

(i) If a multimodal distribution hasn equally spaced
peaks, for example, two antiphase peakssn=2d, one removes
the mulitmodality by the replacement

C j → nC j . s30d

Instead of Eqs.s27d and s28d the distribution of the phases
and the corresponding circular distribution then read
hnC1,nC2, . . . ,nClj and hexpsinC1d ,expsinC2d , . . . ,
expsinCldj. The mean vector of such a scaled distribution
is

RnexpsiQnd =
1

l
o
k=1

l

expsinCkd. s31d

For n=1 si.e., in the case of only one peakd Eqs. s29d and
s31d coincide:R=R1, Q=Q1. Due to the replacement from
Eq. s30d a multimodal distributionhC1,C2, . . . ,Clj with n
equally spaced peaks turns into a unimodal distribution
hnC1,nC2, . . . ,nClj. In this way, the replacement from
Eq. s30d makes it possible to apply all above mentioned
tests for randomness to the unimodal distribution
hnC1,nC2, . . . ,nClj.

Note, this trick, i.e., transforming an equally spaced mul-
timodal distribution to a unimodal distribution by means of
Eq. (30), is exactly the same reasoning that has been used for
the detection ofn equally spaced peaks in a CT distribution
by means of the stimulus locking indices from Eqs.(18) and
(19): With Ck→2pf jstk+ td one immediately getsRn=l j

snd

3std.
(ii ) If a multimodal distribution hasn, not necessarily

equally spaced peaks, the replacement from Eq.(30) will not
lead to a unimodal distribution. In this general case several
of the above mentioned tests will not fly. However, we can
still use Rao’s spacing test[39], thex2 test[41], Watson’sUn

2

test [42], and the Kuiper test[43–46]. All of these tests de-
tect whether the observed distribution differs significantly
from randomness. For this, the null hypothesis is that the
observed distribution is uniform.
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This statistical approach corresponds to estimating how
strongly the observed CT distribution differs from a uniform
CT distribution by means of the entropy based stimulus lock-
ing indices from Eqs.(25) and (26). The entropy based
method compares the observed distribution with the uniform
distribution irrespective of the number of peaks of the ob-
served distribution(see Sec. III B).

Statistical tests of this kind found numerous applications
to physics and biology[33]. For instance, in physiology sta-
tistical tests have been used to detect cardiorespiratory syn-
chronization[47–49]. In this caseC1,C2, . . . ,Cl denote the
phase difference between the cardiac and the respiratory sig-
nals measured at consecutive timest1,t2, . . . ,tl during an ob-
servation. Also for the study of movement coordination sta-
tistical tests have been applied[50].

D. Cross-trial Kolmogorov-Smirnov test

The most accepted statistical test for continuous data is
the Kolmogorov-Smirnov test[51]. In this study the
Kolmogorov-Smirnov test is used in a cross-trial manner. To
test whether the observed CT distribution of the phase of
oscillator j , hf jst+tkdjk=1,. . .,l from Eq. (17), differs signifi-
cantly from randomness, i.e., from a uniform distribution, I
determine the correspondingP value denoted bybj. Analo-
gously, to test whether the observed CT distribution of the
n:m phase difference,hwn,mst+tkdjk=1,. . .,l from Eq. (17), dif-
fers significantly from a uniform distribution, the corre-
spondingP valueBn,m is determined.

I explain the application of the Kolmogorov-Smirnov test
to the CT distribution of the phase of oscillatorj . It works
similarly for the CT distribution of then:m phase difference.
For each potential valuef, the CT Kolmogorov-Smirnov test
compares the proportion of valuesf jst+t1d ,f jst
+t2d , . . . ,f jst+tld, which are less thanf, with the corre-
sponding proportion of phase values of a uniform distribu-
tion less thanf. Gsfd is the cumulative distribution function
of the observed probability distribution. Put otherwise,Gsfd
is the function giving the fraction of the data pointsf jst
+t1d ,f jst+t2d , . . . ,f jst+tld, which is left of f. Psfd is the
cumulative distribution function of a uniform distribution.

The Kolmogorov-Smirnov test uses the maximal valueD
of the absolute difference between the two cumulative distri-
bution functions

D = max
0øfø1

uGsfd − Psfdu. s32d

The probability of error(i.e., the probability value) for re-
jecting the null hypothesis then reads

PKSsdd = 2o
j=1

`

s− 1d j−1exps− 2j2d2d, s33d

where

d = DSÎ l

2
+ 0.12 + 0.11Î2

l
D . s34d

The P values of the CT Kolomogorov-Smirnov tests and
their corresponding CT distributions from Eq.(17) are de-
noted by

bjstd for hf jst + tkdjk=1,. . .,l , s35d

Bn,mstd for hwn,mst + tkdjk=1,. . .,l . s36d

The P value provides the smallest significance level by
which the null hypothesis(i.e., randomness) can be rejected.
Hence, one getsP=1, provided the observed distribution is
uniform. If the observed CT distribution has one Dirac-like
peak, one obtains aP value close to 0. Multimodal CT dis-
tributions yield values ofP somewhere in between 0 and 1
(see below). Note, from theP value one cannot infer the
number of peaks of a multimodal distribution.

In Secs. VII E and X the CT Kolomogorov-Smirnov test
will be compared to the stimulus locking indices from Sec.
III B and to the CT Kuiper test described below.

E. Cross-trial Kuiper test

The Kuiper test is a circular version of the Kolmogorov-
Smirnov test[33,43–46]. To account for the circular nature
of phases or phase differences, the Kuiper test does not use
the maximal valueD of the absolute difference between the
two cumulative distribution functions[see Eq.(32)]. Instead,
the Kuiper test usesV=D++D−, where

D+ = max
0øfø1

Gsfd − Psfd, s37d

D− = max
0øfø1

Psfd − Gsfd. s38d

For further details I refer to Refs.[33,43–46]. The P values
of the CT Kuiper tests and their corresponding CT distribu-
tions from Eq.(17) read

pjstd for hf jst + tkdjk=1,. . .,l , s39d

Pn,mstd for hwn,mst + tkdjk=1,. . .,l . s40d

In Secs. V B and VII E the CT Kuiper test will be com-
pared to the stimulus-locking indices from Sec. III B. In
Secs. VII E and X it will be explained why it is absolutely
necessary to use the CT Kuiper test instead of the CT Kol-
mogorov Smirnov test.

The first and the 99th percentile of the prestimulus distri-
butions hpjstdjtPfta,0f and hPn,mstdjtPfta,0f provide confidence
levels, which allow one to determine whether a stimulus
causes a significant change of the corresponding CT distri-
bution of the phase or the phase difference.

IV. STANDARD ANALYSIS APPLIED ACROSS TRIALS

In this section I sketch how standard univariate and bi-
variate data analysis are applied across trials.

A. Cross-trial averaging

CT averaging relative to stimulus onset is widely used for
noise reduction of biological signals, such as EEG[7,10] and
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MEG signals[11,26] as well as LFPs[6]. In fact, CT aver-
aging is the golden standard in neuroscience and medicine
for the detection of stimulus-locked responses of an oscilla-
tor [7,10,11]. The CT averaged signal of thej th phase oscil-
lator is defined by Eq.(1) and readsx̄jstd= l−1ok=1

l xjstk+ td
where the signal of thej th oscillator is given by Eq.(7). The
stimulus onsetst1,t2, . . . ,tl serve as trigger points for the
averaging procedure.

As discussed in Sec. I, calculating the CT averaged signal
is only justified, provided the responsexj under consideration
can be decomposed into a stereotypical evoked responseej,
which follows the stimulus with a constant delay, and addi-
tive Gaussian noisej j according to Eq.(2) [10,11].

The stochastic oscillator model given by Eqs.(3) and (4)
violates the averaging assumption given by Eq.(2).

(i) The oscillators perform an ongoing oscillation, so that
it is not appropriate to assume that their signalxj is a deter-
ministic response only during a short period of time, and
nothing but noise during the rest of the time.

(ii ) The stimulation effect may depend on the phase of
the oscillator.

(iii ) Noise is not simply added to the signalxj, but inher-
ent in the dynamics.

(iv) The oscillators may display a CT response clustering
instead of reacting just stereotypically. Anyhow, all these fea-
tures, which are in contradiction to the averaging assumption
from Eq. (2), are basic dynamical features which both the
model given by Eqs.(3) and (4) and oscillatory neuronal
activity have in common(see discussion in Sec. I). In a nut-
shell, the averaging assumption given by Eq.(2) is not ful-
filled for the phase oscillator model under consideration as
well as for stimulated neuronal oscillations. And, the phase
oscillator model may serve as a simple model for stimulated
oscillatory brain activity.

B. Cross-trial standard deviation

To estimate whether the poststimulus signals of the oscil-
lators are stereotypical, I determine the standard deviation
across trials at each timet relative to stimulus onset with the
cross-trial standard deviationof the j th oscillator according
to

% jstd =Î 1

l − 1o
k=1

l

fxjstk + td − x̄jstdg2, s41d

where x̄j is the CT averaged signal from Eq.(1), and xjstd
=cosf2pf jstdg according to Eqs.(7) and (14). % jstd is ex-
pected to be small when the signalsxjstk+ td are perfectly
stimulus locked at timet, and large when there is no stimulus
locking.

C. Cross-trial cross correlation

To reveal stimulus-locked linear correlations between the
two oscillators I determine the cross correlation across trials
at each timet relative to stimulus onset with thecross-trial
cross-correlation(CTCC) betweenx1 andx2 at time t given
by

Cstd =

o
k=1

l

x1st + tkdx2st + tkd

ÎFo
k=1

l

x1
2st + tkdGFo

k=1

l

x2
2st + tkdG . s42d

By definition C is set to zero if all responses ofx1 or x2
vanish at timet, in order to avoid a singularity. To avoid
singular behavior, alternatively, one can use thecross-trial
sign cross correlation(CTSCC) betweenx1 andx2 at time t
defined by

Sstd =
1

l
o
k=1

l

sgnfx1st + tkdx2st + tkdg, s43d

which corresponds to the CTCC of the signals’ signs, where
sgnsad=−1,0, or 1 ifa,0, =0, or.0.

C and S are normalized: −1øCstdø1 and −1øSstdø1
hold for all t. Cstd=1 or −1 if x1st+tkd=cx2st+tkd with con-
stantc.0 or ,0 for all k=1, . . . ,l. Analogously,Sstd=1 or
−1 if x1st+tkd andx2st+tkd have either the same sign for all
k=1, . . . ,l or different signs for allk=1, . . . ,l. Sstd=0 if at
least one of the responses vanishes at timet for all k
=1, . . . ,l.

V. TRANSMISSION OF CT AVERAGED RESPONSES

A. Transmission of resets

This section focuses on how a reset of oscillator 1 is
transmitted to oscillator 2. For this, I choose the simplest
case, where the two oscillators are 1:1 coupled, i.e.,n=m
=1 in Eqs.(3) and (4). I assume that the coupling is strong
enough compared to the noise amplitudeD, so that without
stimulation the two oscillators spontaneously synchronize in
phase[Figs. 2(k)–2(m)]. The stimulus of oscillator 1 is mod-
eled bySsc1d= I cosc1. The stimulation intensityI is large
compared to both coupling strengthK and noise amplitude
DsK! I ,D! Id. Therefore oscillator 1 is quickly reset by the
strong stimulus:f1 is shifted close tof1

stat<0.36[Fig. 2(a)].
This reset is reflected by an increase of the resetting indexr1
from Eq. (20) [Fig. 2(b)] and the entropy based indexm1
from Eq. (25) [Fig. 2(c)]. The CT averaged signalx̄1 from
Eq. (1) vanishes during the prestimulus period because of the
randomized stimulus administration[Fig. 2(e)]. The reset
leads to an oscillatory CT averaged signalx̄1, which relaxes
to zero due to noise.

The stimulus of oscillator 1 perturbs the strong synchro-
nization between both oscillators. Because of the coupling
between the two oscillators, the phase of oscillator 2 gets
adapted to the phase of oscillator 1 within roughly a period.
Before the reset of oscillator 2 reaches its maximum, the two
oscillators undergo a transient epoch of desynchronization
and resynchronization[Figs. 2(k)–2(m)]: As soon as both
oscillators are fully resynchronized, the reset of oscillator 2
is maximal [Figs. 2(g) and 2(h)]. In this way the reset of
oscillator 1 is transmitted onto oscillator 2 via the coupling.
The reset of oscillator 2 corresponds to an increase of the
resetting indexr2 [Fig. 2(g)] and the entropy based indexm2
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[Fig. 2(h)] and causes an oscillatory CT averaged signalx̄2,
which vanishes in the course of the poststimulus period be-
cause of noise[Fig. 2(j)].

Let me compare the CT distribution of phasef1 and the
corresponding indicesr1 and m1 [Figs. 2(a)–2(c)] with the
CT distribution of phasef2 and the corresponding indicesr2
andm2 [Figs. 2(f)–2(h)]: The reset of oscillator 2 occurs by
transmission via the coupling, and is delayed and less pro-
nounced compared to the reset of oscillator 1. Furthermore,
the reset of oscillator 2 appears after the stimulus-locked
desynchronization[compare Figs. 2(g) and 2(l)].

B. Cross-trial Kuiper test

The reset of oscillator 1 shows up as an increase of the
resetting indexr1 from Eq. (20) [Fig. 2(b)] and the entropy

based indexm1 from Eq.(25) [Fig. 2(c)]. The CT Kuiper test
of the CT distribution off1 [Fig. 2(d)] yields theP valuep1
from Eq. (39). Because of the randomized stimulus adminis-
tration the prestimulus CT distribution off1 is uniform.
Therefore,p1 is close to 1, i.e., log10sp1d attains values be-
tween 0 and −1. The strong reset corresponds to log10sp1d
=−128.3 at stimulus offset. This means that with a probabil-
ity of 10−128.3the CT distribution off1 at stimulus offset is a
uniform distribution. In other words, the null hypothesis
(uniform distribution) can be rejected: At stimulus offset the
CT distribution differs significantly from a uniform distribu-
tion.

By which of the three measures,r1, m1, and p1, is the
duration of the resetting epoch detected appropriately? The
three quantities reveal practically the same time as onset of

FIG. 2. A strong stimulusSsc1d= I cosc1 from Eq.(3) causes a
reset of oscillator 1 which is transmitted to oscillator 2. CT distri-
butions from Eq.(17) are shown as time-dependent histograms of
f j andw1,1 calculated across trials for each timet relative to stimu-
lus onset within the time windowfta,tbg : hf1st+tkdjk=1,. . .,l in (a),
hf2st+tkdjk=1,. . .,l in (f), and hw1,1st+tkdjk=1,. . .,l in (k) (0 is black
and maximal values are white). Indices from Eqs.(19)–(26) and CT
averaged signals from Eq.(1): r1 in (b), m1 in (c), x̄1 in (e), r2 in
(g), m2 in (h), x̄2 in (j), s1,1 in (l), andh1,1 in (m). Base 10 loga-
rithm of the P values of the CT Kuiper test for randomness:
log10spjd from Eq. (39) for the CT distribution of the phase of
oscillator j in (d) and (i); log10sPn,md from Eq. (40) for the CT
distribution of then:m phase difference in(n). Onset(at t=0) and
offset of the stimulus of oscillator 1 are indicated by solid vertical
lines. Prestimulus interval—t,0, poststimulus interval—t.0. Sig-
nificance levels: Dotted lines in(b), (c), (g), and(h) denote the 99th
percentile of the corresponding prestimulus distributions. In(d),
(e), (i), (j), (l), (m), and (n) upper and lower dotted lines indicate
the 99th and the first percentile of the corresponding prestimulus
distribution in the intervalf−8,0f. Note, a noninteresting part of the
prestimulus range of the time windowfta,tbg=f−8,8g is not shown
for the sake of clarity, but used for the calculation of the signifi-
cance levels. Parameters of Eqs.(3) and (4): K=3.5, n=m=1,
v1/ s2pd=1.5,v2/ s2pd=1.494,D=1, I =40,u=0, twin=16 [see Eq.
(16)], stimulus duration =0.15, and number of stimulil =200. Re-
sults are stable with respect to variations ofl between 50 and 2000
and more.

PETER A. TASS PHYSICAL REVIEW E69, 051909(2004)

051909-8



the reset. However, the end and, hence, the duration of the
reset differs.p1 exceeds its first prestimulus percentile for
t.5.63. Whilem1 attains values below its 99th prestimulus
percentile already fort.3.37,r1 falls below its 99th percen-
tile only for t.7.7. According to the impression one gets
from a visual inspection of the CT distribution off1 [Fig.
2(a)], the time courses of both the resetting indexr1 and the
P value p1 of the CT Kuiper test reflect the duration of the
reset better compared to the entropy based indexm1.

The reset of oscillator 2 is weaker, but nevertheless reli-
ably detected by means of theP value p2 from Eq. (39) of
the CT Kuiper test[Fig. 2(i)]. More precisely, the CT Kuiper
test detects the reset as an epoch with a significantly nonuni-
form CT distribution off2. Again, the duration of the reset is
better detected with the CT Kuiper test and with the resetting
index r2 [Fig. 2(g)] as opposed to the indexm2 [Fig. 2(h)].

The transient desynchronization is related to a decrease of
the 1:1 synchronization indexs1,1 from Eq. (19) and a de-
crease of the entropy based 1:1 stimulus-locking indexh1,1
from Eq. (26) below their first prestimulus percentile[Fig.
2(l)], respectively. Likewise, the CT Kuiper test detects the
transient desynchronization. The strong synchronization dur-
ing the prestimulus epoch is connected with a smallP value
P1,1 from Eq. (40) [Fig. 2(n)]: The null hypothesis(uniform
distribution) is clearly rejected. In contrast, during the tran-
sient epoch of desynchronization the CT distribution ofw1,1
gets more random, so that log10sP1,1d exceeds its 99th pre-
stimulus percentile. As a consequence of the resynchroniza-
tion, log10sP1,1d enters its prestimulus range again.

C. Transmission time

Let me consider how the transmission time of the reset,
i.e., the time elapsing between the maximal reset of oscillator
1 and the maximal reset of oscillator 2 depends on different
model parameters. I compare it with the transmission time of
the CT average, i.e., the time between the maximum of the
CT averaged signal of oscillator 1 and the maximum of the
CT averaged signal of oscillator 2. I normalize both quanti-
ties by division by the mean period of the oscillators,T
=4p / sv1+v2d, and obtain thenormalized transmission time
of the reset

Dtre
* =

tre
s2d − tre

s1d

T
, s44d

wheretre
s jd is the time at which the resetting indexr j from Eq.

(20) is maximal. The maximal value of the resetting index of
oscillator j is denoted by

r̂ j = r jstre
s jdd. s45d

Analogously, one obtains thenormalized transmission time
of the CT average

Dtav
* =

tav
s2d − tav

s1d

T
, s46d

with tav
s jd being the time at which the CT averaged signalx̄j

from Eq. (1) is maximal.Dtav
* corresponds to the standard

method for the detection of transmission times, as used in

medicine and biology[6,7,10,11]. The maximal value of the
CT averaged signal of oscillatorj reads

x̂j = x̄jstav
s jdd. s47d

In this study I consider a stimulation term of lowest order,
i.e., a stimulation mechanism modeled by trigonometric
terms of first order:

Ssc1d = I cossc1 + xd, s48d

wherex is a constant.
First, I assume thatx from Eq. (48) as well as the shift

termu in the couplings in Eqs.(3) and(4) vanish:x=u=0. I
study the impact of the coupling strength on the normalized
transmission times,Dtre

* from Eq. (44) and Dtav
* from Eq.

(46). With increasing coupling strengthK the normalized
transmission time of the reset,Dtre

* , decreases gradually[Fig.
3(a)]. For values ofK greater than the intensity parameterI
from Eq.(48) (I =40 in Fig. 3), Dtre

* finally converges to zero:
The two oscillators then behave like one composite oscilla-
tor. This convergence is not shown in Fig. 3; rather I focus
on phenomena occurring for weaker coupling, since the latter
is more realistic for applications to biology and medicine.

Unlike Dtre
* , the normalized transmission time of the CT

averageDtav
* from Eq.(46) displays a discrete dependence on

K: Over the whole range of the coupling constant, i.e., for
0øKø15, Dtav

* takes only discrete values(except for minor
fluctuations) 0, 1, and 2. With an increase ofK, Dtav

* jumps
from 2 to 1 and finally to 0, with an overlap of the different
levels ofDtav

* .
To understand the discrete dependence ofDtav

* on K, let
me consider the time course ofx̄j for intermediate coupling
sK=2.02d and strong couplingsK=11.3d [Figs. 4(a) and
4(b)]. According to their coupling mechanism, defined by
Eqs. (3) and (4) with u=0, both oscillators spontaneously
tend to synchronize in phase. A maximum of the CT aver-
aged responsex̄2 requires a maximum of the reset of oscil-
lator 2, which, in turn, requires a complete in-phase resyn-
chronization of the two oscillators[see discussion in the
former section and Figs. 2(f) and 2(j)]. As a consequence of
the particular form of the coupling, which induces an in-
phase synchronization, the maxima ofx̄1 andx̄2 are separated
by multiples of their periodT=4p / sv1+v2d. The quicker the
resynchronization takes place, the stronger the coupling is.
Accordingly, for strong coupling the maxima ofx̄1 and x̄2
coincide, andDtav

* =0. In contrast, for intermediate coupling
it takesx̄2 one more period to attain its maximum:Dtav

* =1.
The fact thatDtre

* depends onK gradually, whereasDtav
*

depends onK in a discrete way, is stable with respect to
variations of the number of trialsl. While l equals 800 in Fig.
3(a), l equals 200 in Fig. 3(c). With a smaller number of
trials l the amplitude of the variations ofDtre

* around the
curve obtained forl =800 increases, especially for small cou-
pling strength. In contrast, for smallerl the range ofK with
overlapping levels ofDtav

* increases, the levels itself get more
noisy, and even higher levels ofDtav

* are added: For one
value ofK one getsDtav

* =3.
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1. Impact of the stimulation parameterx

Does the phase to which oscillator 1 is reset by the stimu-
lus influence the normalized transmission timesDtre

* and
Dtav

* ? Put otherwise, how does the stimulation parameterx
from Eq.(48) modify the normalized transmission times? To
study the impact of the stimulation mechanism, the coupling
is kept constant, i.e.,u=0 in Eqs.(3) and(4). The parameter
x in the stimulation mechanismSsc1d= I cossc1+xd from
Eq. (48) determines the phase to which oscillator 1 is reset at
the end of the stimulation. A stimulus modelled bySsc1d
= I cossc1+kp /2d resets the phase of oscillator 1 toff1

stat

−kp /2g mod1, wheref1
stat<0.36, andk=0,1,2,3(see Fig.

2(a)) and Ref.[5]). Note thatf jstd=c jstd / s2pd mod1 accord-
ing to Eq.(14). I determine how the normalized transmission
times depend onK for different values ofx :x=0 in Fig. 3(a),
x=p /2 in Fig. 3(e), x=p in Fig. 3(g), andx=3p /2 in Fig.
3(i). All other parameters in Figs. 3(e), 3(g), and 3(i) are
identical to those in Fig. 3(a).

Except for minor fluctuations the dependence ofDtre
* on K

is not modified by the different values ofx. In contrast, the

differences between theDtav
* vs K curve for different values

of x are more pronounced.Dtav
* may attain integer values

between 0 and 4. However, the coupling range, where the
different levels ofDtav

* occur, as well as the range of the
discrete levels ofDtav

* strongly depend on the parameterx.
Only for x=p the normalized transmission timeDtav

* attains
values up to 4, whereas forx=p no zero values ofDtav

*

occur. The latter is due tox̄1 having its maximum directly at
the end of the stimulation forx=p. For the range ofK con-
sidered here, the resynchronization of the two oscillators
takes longer than the short time distance between the end of
the stimulation and the occurrence ofx̄1’s maximum.

In summary, the dependence ofDtre
* on K is basically

invariant with respect to variations ofx. The dependence of
Dtav

* on K remains discrete, where the concrete shape of this
curve undergoes changes depending on the value ofx. How-
ever, one important feature of theDtav

* vs K curve remains
invariant with respect to variations ofx :Dtav

* corresponds to
the phase differencew1,1

s between the two oscillators in the
stable synchronized state plus an integerk, wherek repre-
sents the number of periods of lengthT, which are left over
after dividingkT by T in Eq. (46). Accordingly, for in-phase

FIG. 3. (Color) In series of simulations the coupling strengthK of Eqs. (3) and (4) is varied between 0.5 and 15. The stimulation
parameterx of Ssc1d= I cossc1+xd from Eq.(48) and the phase shiftu of the coupling terms of Eqs.(3) and(4) are varied between different
series. Normalized transmission time of the resetDtre

* from Eq. (44) (blue dots) and normalized transmission time of the CT averageDtav
*

from Eq.(46) (red dots) are displayed in(a), (c), (e), (g), (i), (k), (m), and(o). The maximal values of the resetting index of both oscillators,
r̂1 (green) andr̂2 (blue) from Eq.(45), and the maximal value of the CT averaged signal of both oscillators,x̂1 (magenta) andx̂2 (red) from
Eq. (47), are plotted in(b), (d), (f), (h), (j), (l), (n), and(p). (a)–(j) Variation of the stimulation parameterx, while coupling parameteru is
constantly equal to 0: In(b) number of trialsl equals 200, whereas in all other plotsl =800. Stimulation parameterx=0 in (a)–(d), x
=p /2 in (e),(f), x=p in (g),(h), andx=3p /2 in (i),(j). (k)–(p) Variation of the coupling parameteru, with constant stimulation parameter
x=0: u=p /2 in (k),(l), u=p, in (m),(n), andu=3p /2 in (o),(p).

PETER A. TASS PHYSICAL REVIEW E69, 051909(2004)

051909-10



coupling with vanishing detuningDtav
* may attain the values

0, 1, 2, etc., depending on the coupling strengthK.

2. Impact of the coupling parameteru

In this Section I focus on howDtre
* andDtav

* are influenced
by the coupling parameteru. For this, the stimulation param-
eter x in the stimulation mechanismSsc1d= I cossc1+xd
from Eq. (48) is constantly set to zero. The dependence of
the normalized transmission times onK is plotted for differ-
ent values ofu :u=0 in Fig. 3(a), u=p /2 in Fig. 3(k), u=p
in Fig. 3(m), andu=3p /2 in Fig. 3(o). All other parameters
in Figs. 3(k), 3(m), and 3(o) are identical to those in Fig.
3(a).

Neglecting minor fluctuations, the dependence ofDtre
* on

K is invariant with respect to variations ofu. In contrast,Dtav
*

crucially depends onu. From the coupling mechanism it fol-
lows that the phase difference in the synchronized state reads
w1,1=0 in Fig. 3(a), w1,1=0.75 in Fig. 3(k), w1,1=0.5 in Fig.
3(m), andw1,1=0.25 in Fig. 3(o). Correspondingly, foru=0
we getDtav

* =0,1, or 2[Fig. 3(a)]. For u=p /2, Dtav
* attains

the valuesk+0.75 with k=−1,0,1,2[Fig. 3(k)]. For u=p,
Dtav

* takes the valuesk+0.5 with k=−1,0,1[Fig. 3(m)]. For
u=3p /2 we get Dtav

* =k+0.25 with k=0,1 [Fig. 3(o)]. In
summary,

Dtav
* = k +

u

2p
s49d

with integerk, and, hence,Dtav
* directly corresponds to the

phase difference between the two oscillators spontaneously
emerging during the poststimulus process of resynchroniza-
tion according to the coupling mechanism plus an integerk.

The integerk represents a number of periods of lengthkT
which remains after the normalization, i.e., after division by
the periodT in Eq. (46).

The occurrence of negative values ofDtre
* is illustrated in

Figs. 4(c) and 4(d), which show the time course ofx̄j for
intermediate couplingsK=2.6d and strong couplingsK
=11.3d, respectively. The simulations shown in Figs. 4(c)
and 4(d) belong to the series of simulations displayed in Fig.
3(m). As u=p, both oscillators spontaneously tend to syn-
chronize in antiphase. Therefore the maxima ofx̄1 andx̄2 are
shifted in time byT/2+kT, where T=4p / sv1+v2d is the
period of the oscillations andk is an integer. For smaller or
larger coupling strengthK, the process of the poststimulus
resynchronization takes a longer or shorter time, and, hence,
the maximal reset of oscillator 2, combined with a maximum
of x̄2, appears at a later or earlier time.x̄1 has its minimum
directly after the stimulation. Thus, for sufficiently largeK
the maximum ofx̄2 occurs before the maximum ofx̄1 [Fig.
4(d)].

The variation of the coupling parameteru illustrates that
Dtav

* corresponds to the phase differencew1,1
s between the

two oscillators in the stable synchronized state. To under-
stand the dependence ofw1,1

s on model parameters, let me
consider Eq.(13), which shows how the coupling mecha-
nism, i.e., the values ofn andm, the coupling strengthK, the
detuningg=nv1−mv2, and the coupling parameteru deter-
mine the value of the stable fixed pointFn,m

s . I recall thatw1,1
andF1,1 correspond to each other according to Eqs.(8) and
(15). From Eq.(13) it follows that by increasingu from 0 to
2p, w1,1

s is shifted once through a cycle.

D. Strength of reset vs amplitude of CT averaged signal

The maximal value of the resetting index of thej th oscil-
lator is denoted byr̂ j =r jstre

s jdd, whereas the maximum of the
CT averaged signal of thej th oscillator readsx̂j = x̄jstav

s jdd [see
Eqs. (45) and (47)]. According to Eq.(48) the stimulation
mechanism is given bySsc1d= I cossc1+xd. Figure 3 shows
the impact of the stimulation parameterx and the coupling
parameteru on r̂ j and x̂j.

Except for minor variations the dependence ofr̂1 and r̂2
on the coupling strengthK hardly changes with respect to
variations ofx andu. This also holds for a smaller number of
trials [l =200 in Fig. 3(d), compared tol =800 in all other
plots of Fig. 3]. With an increase of the coupling strengthK
the strength of the transmission and, thus, the strength of the
transmitted reset of oscillator 2 increases:r̂2 strongly in-
creases with an increase ofK. In contrast, with an increase of
the coupling strengthK, the reset of oscillator 1, as detected
by r̂1, moderately decreases. For sufficiently large coupling
strengthK, i.e., withK greater than the intensity parameterI
(I =40 in Fig. 3), r̂1 and r̂2 finally converge: The two oscil-
lators are then tightly coupled and behave like one giant
oscillator. The reset of this composite oscillator is less pro-
nounced compared to the reset of a single oscillator(seer̂1).
The range of the coupling strength in Fig. 3 is restricted to
values up to 15, in order to stick to values that are realistic in
the context of models in biology and medicine.

FIG. 4. (Color) (a)–(d) Time course of the CT averaged signals
x̄1 (blue line) and x̄2 (red line) from Eq. (1) belonging to selected
simulations of Fig. 3.(a) and (b) belong to Fig. 3(a), whereas(c)
and (d) belong to Fig. 3(m). Coupling strengths:K=2.02 (a), K
=11.3 (b), K=2.6 (c), and K=11.3 (d). (e) x̄1 belonging to the
simulations of Fig. 3(b) (green line) and of Fig. 3(f) (blue line) with
K=0.5 each.
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Since a reset leads to a nonvanishing CT averaged signal
x̄j from Eq. (1) [see Figs. 2(a)–2(h)], with an increase ofK
the CT averaged response and, thus,x̂2 increases(Fig. 3).
The shape of thex̂2 vs K curve depends on the stimulation
parameterx and the coupling parameteru. These variations
are moderate compared to how strongly the shape of thex̂1
vs K curve depends, in particular, on the stimulation param-
eter x [see, e.g., Figs. 3(b) and 3(f)]. This is due to the
parameterx determining to which phase oscillator 1 is reset
at the end of the stimulation. For suitablex, a maximum of
x̂1 occurs directly at the end of the stimulation[Fig. 4(e),
blue line]. In contrast, the laterx̂1’s maximum occurs after
the stimulation, the smaller is its amplitude[Fig. 4(e), green
line]. For sufficiently large coupling strengthK the two os-
cillators act as one joint oscillator, so that finallyx̂1 and x̂2
converge(Fig. 3).

VI. n : m COUPLING

Let me now turn ton:m coupling, wherenÞ1 and/orm
Þ1 (andnÞm) in Eqs.(3) and(4). Again, only oscillator 1
is stimulated, and the perturbation is transmitted to oscillator
2. However, depending on the interplay of stimulation
mechanism, modeled bySsc1d [e.g., Eq.(48)], andn:m cou-
pling, oscillator 1 and/or oscillator 2 do not exhibit a CT
averaged response. In other words, the transmission of the
stimulus’ action escapes detection when cross-trial averaging
is used. In contrast, the cross-trial stochastic phase resetting
analysis from Sec. III reliably detects the transient processes
under consideration.

All of the dynamical phenomena presented in Secs.
VII–IX are due to a major difference between 1:1 coupling
andn:m coupling: As explained in Sec. II B, in case of the
1:1 coupling Eq.(9), the evolution equation of the 1:1 phase
differenceF1,1, has only one stable fixed pointF1,1

s modulo
2p (for vanishing noise andK.g). This stable fixed point,
in turn, is related to only one stable solution of the phasesc1
andc2 (modulo 2p). In contrast, withn:m coupling a bista-
bility and multistability comes into play: Also forn:m cou-
pling there is only one stable fixed pointFn,m

s modulo 2p
(for vanishing noise andK.g), which is due to the simple
in-phase coupling of lowest order, sinsnc1−mc2+ud and
sinsmc2−nc1−ud in Eqs. (3) and (4) (see Sec. II B). How-
ever, the stable fixed pointFn,m

s now corresponds to more
than only one stable solution of the phasesc1 and c2
(modulo 2p). The number of different stable synchronized
states depends on the values ofn and m (see Sec. II B).
Consequently, after stimulation the twon:m coupled oscilla-
tors may relax to different synchronized states.

VII. NO TRANSMISSION OF THE CT AVERAGED
RESPONSE

A. 1:2 coupling

In this section I demonstrate how by transmission a reset
of oscillator 1 causes an antiphase CT response clustering of
oscillator 2. To this end, I consider 1:2 coupled oscillators
with eigenfrequenciesv1<2v2 (Fig. 5). A strong stimulus
Ssc1d= I cosc1 resets oscillator 1[Fig. 5(a)]. This is re-

flected by the time course of the resetting indexr1 from Eq.
(20) [Fig. 5(b)] and the entropy based indexm1 from Eq.(25)
[Fig. 5(e)]. Additionally, the reset is illustrated by means of a
phase resetting curve[3,5] showingf1

E plotted overf1
B for

all l trials, wheref1
B andf1

E denote the phase of oscillator 1
at the beginning and at the end of the stimulation, respec-
tively [Fig. 6(a)]. Nearly irrespective of the initial phasef1

B,
oscillator 1 is always reset close to 0.3. Such a horizontal
phase resetting curve is a signature of a strong reset[3,5].

In contrast, the phase of oscillator 2 is not stereotypically
reset to one phase value. Rather, oscillator 2 adapts its phase
to the phase of oscillator 1. By doing this, as described in
Sec. VI, oscillator 2 may tend to one of two different, an-
tiphase stable states. This is illustrated by means of a phase
resetting curve withf2

C being plotted overf2
B. f2

C is the
phase of oscillator 2 at the time when the antiphase CT re-
sponse clustering is maximal, i.e., when the antiphase CT
response clustering indexa2 from Eq. (21) is maximal [at
time tcl

s2d=0.56, Fig. 5(m)]. f2
B is the phase of oscillator 2 at

the beginning of the stimulation. For 0.3,f2
B,0.78, f2

C

predominantly lies around 0.95(modulo 1), whereasf2
C at-

tains values around 0.45 else. Put otherwise, depending on
the initial conditions oscillator 2 switches between two dif-
ferent antiphase responses across trials. The antiphase CT
response clustering is detected with the antiphase CT re-
sponse clustering indexa2 [Fig. 5(m)] and, to a certain ex-
tent, also with the entropy based indexm2 [Fig. 5(n)],
whereas it escapes detection with the resetting indexr2 [Fig.
5(k)].

Before stimulation both oscillators are synchronized[Fig.
5(h)]. The reset of oscillator 1 perturbs the synchronization,
so that a transient stimulus-locked desynchronization occurs:
Both the 1:2 synchronization indexs1,2 from Eq. (19) and
the related entropy based indexh1,2 from Eq.(26) fall below
the prestimulus baseline, i.e., below the first percentile of the
corresponding CT distribution[Figs. 5(i) and 5(q)]. As soon
as oscillator 2 has adapted its phase to the phase of oscillator
1, the antiphase CT response clustering is maximal[Fig.
5(m)], and the stimulus-locked synchronization has reached
its prestimulus level[Figs. 5(i) and 5(q)].

Let us study the transmission time elapsing between the
maximal reset of oscillator 1 and the maximal CT response
clustering of oscillator 2. Normalizing this quantity by divi-
sion by the mean period of the oscillators,T=4p / sv1+v2d,
we obtain thenormalized transmission time between the re-
set of oscillator 1 and the CT response clustering of oscilla-
tor 2,

Dtcl-re
* =

tcl
s2d − tre

s1d

T
, s50d

wheretre
s1d is the time at which the resetting indexr1 from Eq.

(20) is maximal, whereastcl
s2d is the time at which the an-

tiphase CT response clustering indexa2 from Eq. (21) is
maximal.

To focus on the impact of the coupling on the transmis-
sion of the stimulus’ effect, I determine howDtcl-re

* changes
with an increase of the coupling strengthK, while all other
model parameters are kept constant. With an increase of the
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coupling strengthK, Dtcl-re
* decreases gradually[Fig. 6(c),

compare Fig. 3]. A quantity comparable toDtav
* from Eq.(46)

cannot be used here, since the CT averaged response of os-
cillator 2 vanishes due to the antiphase CT response cluster-
ing [Fig. 7(c)].

To assess how the extent of the reset and of the CT re-
sponse clustering vary with variations of the coupling
strength, I introduce the maximal value ofa2, the antiphase
CT clustering index of oscillator 2 from Eq.(21), by

â2 = a2stcl
s2dd. s51d

Additionally I user̂1, the maximal value of the resetting
index of oscillator 1 from Eq.(45). With an increase ofK the
strength of the reset of oscillator 1 slightly decreases,
whereas the strength of the antiphase CT response clustering
strongly increases[Fig. 6(d)].

B. Mean angular deviation

Based on techniques from circular statistics[33], in Sec.
III the CT mean angular deviationL j

s1dstd for a unimodal CT
distribution hf jst+tkdjk=1,. . .,l at time t and the CT mean an-
gular deviationL j

s2dstd for an antiphase bimodal CT distribu-
tion hf jst+tkdjk=1,. . .,l at timet have been introduced as addi-
tional measures for the stimulus-locking indicesl j

s1dstd and
l j

s2dstd [Eqs.(18), (20), and(23)]. A strong reset corresponds
to large values of the resetting indexr jstd=l j

s1dstd and small

values of the CT mean angular deviationL j
s1dstd. Absence of

a reset is related to smallr jstd and largeL j
s1dstd. This rela-

tionship betweenr j andL j
s1d is reflected by the time courses

in Figs. 5(b) and 5(f) as well as Figs. 5(k) and 5(o).
According to Eqs.(19) and (24), the CT mean angular

deviation Yn,mstd for a unimodal CT distributionhwn,mst
+tkdjk=1,. . .,l at time t serves as an additional measure for the

FIG. 5. A strong stimulusSsc1d= I cosc1 from Eq.(3) causes a reset of oscillator 1 which, being transmitted, shows up as antiphase CT
response clustering of oscillator 2. CT distributions from Eq.(17): hf1st+tkdjk=1,. . .,l in (a), hw1,2st+tkdjk=1,. . .,l in (h), and hf2st
+tkdjk=1,. . .,l in (j) (0 is black and maximal values are white). Quantities from Eqs.(18)–(26): r1 in (b), l1

s2d in (c), a1 in (d), m1 in (e), L1
s1d

in (f), L1
s2d in (g), s1,2 in (i), r2 in (k), l2

s2d in (l), a2 in (m), m2 in (n), L2
s1d in (o), L2

s2d in (p), h1,2 in (q), andY1,2 in (r). Same format as in
Fig. 2. Significance levels: Dotted lines in(b), (c), (e), (k), (l), and (n) denote the 99th percentile of the corresponding prestimulus
distributions. Dotted lines in(f), (g), (o), and(p) denote the first percentile of the corresponding prestimulus distributions. In(d), (i) and(m),
(q), and(r) upper and lower dotted lines indicate the 99th and the first percentile of the corresponding prestimulus distribution in the interval
f−8,0f. Prestimulus time window used for calculating the significance levels:fta,0f=f−8,0f. Parameters of Eqs.(3) and (4): K=3.5, n=1,
m=2, v1/ s2pd=1.5, v2/ s2pd=0.747,D=1, I =40, u=0 twin=16 [see Eq.(16)], stimulus duration =0.15, and number of stimulil =200.
Results are stable with respect to variations ofl between 50 and 2000 and more.
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n:m synchronization indexsn,mstd. Large values ofYn,mstd
correspond to small values ofsn,mstd and vice versa, as dem-
onstrated by Figs. 5(i) and 5(r).

In fact, for the analysis of the presented signals, generated
by numerical simulations of Eqs.(3) and (4), L j

sndstd and
l j

sndstd sn=1,2d as well asYn,mstd and sn,mstd provide very
similar and alternative information, respectively.

C. Comparison with the standard cross-trial analysis

Due to the reset of oscillator 1, the corresponding CT
averaged signalx̄1 from Eq. (1) shows an oscillatory re-
sponse[Fig. 7(a)], similar to that one plotted in Fig. 2(d). In
contrast, as a consequence of the antiphase CT response clus-
tering the CT averaged signalx̄2 of oscillator 2 vanishes[Fig.
7(c)]: The poststimulusx̄2 stays within the prestimulus range
given by the first and 99th percentile of the prestimulus dis-
tribution of x̄2. Hence, with CT averaging the transmission of
the stimulus’ action cannot be detected.

Because of the reset of oscillator 1, at the end of the
stimulation its CT standard deviation%1 is clearly smaller
compared to the prestimulus range. However, during its fol-
lowing reincrease,%1 undergoes an artificial oscillation with
twice the frequency of oscillator 1[Fig. 7(b)]. The same type
of artificial oscillation is observed in%2, the CT standard
deviation of oscillator 2[Fig. 7(d)]. Such artificial oscilla-
tions with typically twice the frequency of the stimulus-

locked responses are the reason why the CT standard devia-
tion is not an appropriate method for the analysis of
stimulus-locked responses[30].

To detect stimulus-locked linear correlations between the
two oscillators I compute the CT cross correlationC from
Eq. (42). There are no stimulus-locked changes ofC; rather
C remains within the prestimulus range throughout the whole
poststimulus period[Fig. 7(e)]. In particular,C is not able to
detect the stimulus-locked transient desynchronization re-
vealed with the 1:2 synchronization indexs1,2 from Eq.(19)
[Fig. 5(j)] and the related entropy based indexh1,2 from Eq.
(26) [Fig. 5(k)].

D. 1:3 coupling

Depending on the coupling mechanism, one may also ob-
serve CT response clustering of higher order, i.e., there may
be three or more clusters of different responses across trials.
For illustration, I consider 1:3 coupled oscillators with eigen-
frequenciesv1<3v2 (Fig. 8). A resetting stimulusSsc1d
= I cosc1 is administered to oscillator 1[Fig. 8(a)]. The reset
is detected with the resetting indexr1 from Eq. (20) [Fig.
8(b)] and the entropy based indexm1 from Eq. (25) [Fig.
8(c)]. The corresponding phase resetting curve shows that
oscillator 1 is reset, irrespective of the initial phasef1

B [Fig.
8(m)].

In contrast, the phase of oscillator 2 is not stereotypically
reset to one particular value. Rather, by adapting its phase to
the phase of oscillator 1, oscillator 2 may choose one of three
different, equidistant stable states, as described in Sec. VI.
This is shown with a phase resetting curve, wheref2

C is
plotted overf2

B [Fig. 8(n)]. f2
C is the phase of oscillator 2 at

FIG. 6. Phase resetting curves[(a) and (b)]: (a) f1
E is plotted

overf1
B, (b) f2

C is plotted overf2
B; f j

B=f js0d is the phase of thej th
oscillator at the beginning of the stimulation,f1

E is the phase of
oscillator 1 at the end of the stimulation,f2

C=f2stcl
s2dd is the phase of

oscillator 2 at the time when the CT response clustering is maximal
[tcl

s2d=0.56, see Fig. 5(g)]. [(c) and (d)] The coupling strengthK is
varied between 0.5 and 15(with all other parameters as in Fig. 5).
Dtcl-re

* from Eq.(50), i.e., the normalized transmission time between
the maximal reset of oscillator 1 and the maximal antiphase CT
response clustering of oscillator 2, is plotted in(c). r̂1 (thin line),
the maximal value of the resetting index of oscillator 1 from Eq.
(45), and â2 (thick line), the maximal value of the antiphase clus-
tering index of oscillator 2 from Eq.(51), are shown in(d).

FIG. 7. CT averaged signalsx̄1 (a) and x̄2 (c) from Eq. (1), CT
standard deviation%1 (b) and%2 (d) from Eq. (41), and CT cross
correlationC (e) from Eq. (42) of the simulation shown in Fig. 5.
Lower and upper dotted lines indicate the corresponding 1st and
99th percentile of the corresponding prestimulus distribution in the
interval f−8,0g.
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the time when the CT response three clustering is maximal,
i.e., when the CT three-clustering indexb2 from Eq. (22) is
maximal [at time tcl

s2d=0.44, Fig. 8(i)]. f2
B is the phase of

oscillator 2 at the beginning of the stimulation. Approxi-
mately a third of a cyclef0,1g of f2

B is connected with one
of three equidistant values off2

C (modulo 1), respectively.

The CT response three clustering is detected with the CT
three-clustering indexb2 from Eq. (22) [Fig. 8(i)] and, less
pronounced, also with the entropy based indexm2 [Fig. 8(j)],
whereas it cannot be detected with the resetting indexr2
[Fig. 8(g)] or the CT antiphase response clustering indexa2
from Eq. (21) [Fig. 5(h)].

FIG. 8. A strong stimulusSsc1d= I cosc1 from Eq.(3) causes a
reset of oscillator 1 and, by transmission, a CT response three clus-
tering of oscillator 2. CT distributions from Eq.(17): hf1st
+tkdjk=1,. . .,l in (a) andhf2st+tkdjk=1,. . .,l in (g) (0 is black and maxi-
mal values are white). Indices from Eqs.(20)–(25): r1 in (b), m1 in
(c), r2 in (h), a2 in (i), b2 in (j), andm2 in (k). CT averaged signals
from Eq. (1): x̄1 in (f) and x̄2 in (n). Base 10 logarithm of theP
values of the CT Kuiper test for randomness: log10spjd from Eq.
(39) for the CT distribution of the phase of oscillatorj in (d) and
(l). Base 10 logarithm of theP values of the CT Kolmogorov-
Smirnov test for randomness: log10sbjd from Eq. (35) for the CT
distribution of the phase of oscillatorj in (e) and(m). Same format
as in Fig. 2. Prestimulus time window used for calculating the
significance levels:fta,0f=f−8,0f. Parameters of Eqs.(3) and (4):
K=3.5, n=1, m=3, v1/ s2pd=1.5, v2/ s2pd=0.498, D=1, I =40,
u=0, twin=16 [see Eq.(16)], stimulus duration =0.15, and number
of stimuli l =200. Results are stable with respect to variations ofl
between 50 and 2000 and more. Phase resetting curves[(o) and
(p)]: (o) f1

E is plotted overf1
B, (p) f2

C is plotted overf2
B; f j

B

=f js0d is the phase of thej th oscillator at the beginning of the
stimulation,f1

E is the phase of oscillator 1 at the end of the stimu-
lation, f2

C=f2stcl
s2dd is the phase of oscillator 2 at the time when the

CT response three clustering is maximal[tcl
s2d=0.44, see(j)].
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While the reset is connected with a nonvanishing aver-
aged responsex̄1 from Eq. (1) [Fig. 8(e)], the CT averaged
signal x̄2 of oscillator 2 is averaged out[Fig. 8(l)], because
the three clusters of responses are of similar size and have
equidistant phases[Figs. 8(f) and 8(n)].

E. Cross-trial Kuiper test

The strong reset of oscillator 1 is detected by the indices
r1 andm1 as well as with the CT Kuiper test: The resetting
index r1 from Eq. (20) and the entropy based indexm1 from
Eq. (25) increase beyond their 99th prestimulus percentile
[Figs. 8(b) and 8(c)], respectively. TheP valuep1 from Eq.
(35), obtained with the CT Kuiper test, decreases below its
first prestimulus percentile[Fig. 8(d)]. The duration of the
reset, as given by the pattern of the CT distribution off1, is
best represented by the time course ofr1 and log10sp1d.

The CT response three clustering is specifically detected
with the CT three-clustering indexb2 from Eq. (22) [Fig.
8(j)]. Furthermore, it shows up as an increase of the entropy
based indexm1 beyond its 99th prestimulus percentile[Fig.
8(j)]. TheP valuep2 of the CT Kuiper test, decreases below
its first prestimulus percentile[Fig. 8(l)]. This means that
during the CT response three clustering the CT distribution
of f2 is significantly different from the prestimulus uniform
distribution. The duration of the CT response three cluster-
ing, i.e., the pattern of the CT distribution off2, is best
reflected by the time course ofb2. Note, the CT Kuiper test
detects both a reset and a CT response clustering as epochs
during which the CT distribution of the phase differs signifi-
cantly from a uniform distribution. With the CT Kuiper test
one cannot distinguish between a reset and a CT response
clustering.

The Kuiper test is the circular version of the Kolmogorov-
Smirnov test (see Secs. III D and III E). Unlike the CT
Kuiper-test, the CT Kolmogorov-Smirnov test is no appro-
priate method for detecting stimulus-locked dynamics. TheP
value from Eq. (35) obtained with the CT Kolmogorov-
Smirnov test displays artificial oscillations that are not re-
lated to the stimulus-locked process under consideration
[Figs. 8(e) and 8(m)]. The origin of these oscillations is ex-
plained in Sec. X. In particular, due to these oscillations the
epoch with CT response three clustering is not detected as a
whole [Fig. 8(m)]. Rather, during this epoch log10sb2d from
Eq. (35), the base 10 logarithm of theP value of the CT
Kolmogorov-Smirnov test, oscillates around its first pre-
stimulus percentile.

VIII. NO DIRECT CT AVERAGED RESPONSE, BUT
TRANSMISSION OF THE CT AVERAGED RESPONSE

In biological systems the response to a stimulus often de-
pends on the phase of the oscillation at which the stimulus is
administered[3,5]. For instance, in spinal cord physiology
there is the so-called reflex reversal, which means that de-
pending on the initial phase, a network of oscillatory neurons
may generate antiphase responses, i.e., either an excitation of
the flexor muscle or an excitation of the extensor muscle

[52]. The reflex reversal is essential for an adaptive control
of locomotion.

Let me consider a simple stimulation mechanism which
causes an antiphase CT response clustering of the stimulated
oscillator in a way comparable to the reflex reversal. For this,
I useSsc1d= I coss2c1d. Depending on the initial phase, os-
cillator 1 generates one of two antiphase responses. This is
shown by means of the phase resetting curve, wheref1

E plot-
ted overf1

B for all l trials [Fig. 9(k)]. f1
B andf1

E denote the
phase of oscillator 1 at the beginning and at the end of the
stimulation, respectively. f1

E is close to 0.66 for
0.32,f1

B,0.84, whereasf1
E is close to 0.16 else, with little

overlap between the two regions off1
B [Fig. 9(k)]. Accord-

ingly, the CT distribution of the phase of oscillator 1 shows
two pronounced antiphase peaks at the end of the stimulation
[Fig. 9(a)]. This, in turn, corresponds to high values ofa1,
the antiphase CT clustering index from Eq.(21) [Fig. 9(b)].
Consistently, the clustering is not detected with the resetting
index r1 from Eq. (20). Noise makes the clustering fade
away in the course of the poststimulus transient.

As explained in Sec. VI, as a consequence of the 1:2
coupling, in the stable synchronized state the same value of
f2 belongs to the two antiphase values off1. Correspond-
ingly, after the stimulation one peak of the CT distribution of
f2 is formed[Fig. 9(e)]. However, the phase resetting curve
shows that the reset caused by transmission is less pro-
nounced[Fig. 9(l)] compared to a reset caused by direct and
strong stimulation[Fig. 6(a)]. Nevertheless, the reset is de-
tected with the resetting indexr2 from Eq. (20) [Fig. 9(f)],
whereas the antiphase CT clustering indexa2 from Eq. (21)
falls below the prestimulus range. An increase ofr2 com-
bined with a decrease ofa2 is indicative of a reset[compare
Figs. 5(b) and 5(c)]. The reset causes a transient desynchro-
nization that vanishes as soon as the phase of oscillator 2 is
adapted to the phase of oscillator 1[Figs. 9(i) and 9(j)].

Due to the antiphase CT clustering, the averaged signalx̄1
of oscillator 1 vanishes[Fig. 9(d)], whereas the reset of os-
cillator 2 is connected with a nonvanishing averaged re-
sponse ofx̄2 [Fig. 9(h)].

IX. NEITHER DIRECT CT AVERAGED RESPONSE NOR
TRANSMISSION OF THE CT AVERAGED

RESPONSE

The same stimulusSsc1d= I coss2c1d is administered to
oscillator 1 as in Sec. VIII. This causes an antiphase CT
response clustering[Fig. 10(a)], which is detected with the
antiphase CT clustering indexa1 from Eq. (21) [Fig. 10(c)],
but not with the resetting indexr1 from Eq.(20) [Fig. 10(b)].
Unlike in Sec. VIII, the two oscillators are 1:1 coupled, so
that there is only one stable phase relation between the two
oscillators. Hence, the antiphase CT response clustering is
transmitted onto oscillator 2[Figs. 10(e) and 10(g)]. Because
of the antiphase CT response clustering the averaged signals
x̄j from Eq. (1) of both oscillators vanish.

There are numerous other suitable combinations of cou-
pling mechanism and stimulation mechanism for which both
oscillators have no averaged response. For instance, in case
of a 2:3 coupling, administration of a stimulusSsc1d
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= I coss2c1d causes an antiphase CT response clustering,
which via transmission shows up as CT response three clus-
tering.

X. COMPARISON OF THE CT DATA ANALYSIS
TECHNIQUES WITH SYNTHETIC RESPONSES

To illustrate and summarize important features of the data
analysis techniques from Secs. III and IV, they are applied to
noise-free, idealized responses. These artificial responses are
not generated by the model given by Eqs.(3) and (4), but
simply defined in order to reveal advantages and drawbacks
of the different data analysis methods. I consider an en-
semble of responses of both oscillators given by

f1st + tkd = ft + «j1,kgmod1, s52d

f2st + tkd = ft + Df + «j2,kgmod1, s53d

for k=1, . . . ,l, whereDf is the mean phase difference be-
tween the responses of the two oscillators, andhj j ,kjk=1

l is
constant and normally distributed with variance 1 forj
=1,2. By varying « I modify the variance of the normal
distributions of the responses. While the timet increases
from 0 to 1, the CT distribution of the phase of each oscil-
lator, hf jst+tkdjk=1,. . .,l from Eq. (17), is shifted through one
cycle [Figs. 11(a) and 11(b)]. Df is chosen to be equal to
0.25, where the features of the CT analysis methods dis-
cussed below are independent of the choice ofDf.

FIG. 9. A strong stimulusSsc1d= I coss2c1d from Eq.(3) causes
an antiphase CT response clustering of oscillator 1, which by trans-
mission via the 2:1 coupling leads to a reset of oscillator 2. CT
distributions from Eq. (17): hf1st+tkdjk=1,. . .,l in (a), hf2st
+tkdjk=1,. . .,l in (e), and hw2,1st+tkdjk=1,. . .,l in (h) (0 is black and
maximal values are white). Indices from Eqs.(19)–(21): r1 in (b),
a1 in (c), r2 in (f), ands2,1 in (j). CT averaged signals from Eq.(1):
x̄1 in (d) and x̄2 in (h). Same format as in Fig. 2. Prestimulus time
window used for calculating the significance levels:fta,0f=f
−8,0f. Parameters of Eqs.(3) and (4): K=3.5, n=2, m=1,
v1/ s2pd=1.5, v2/ s2pd=2.99,D=1, I =40, u=0, twin=16 [see Eq.
(16)], stimulus duration =0.15, and number of stimulil =200. Re-
sults are stable with respect to variations ofl between 50 and 2000
and more. Phase resetting curves[(j) and(k)]: (j) f1

E is plotted over
f1

B, (k) f2
R is plotted overf2

B; f j
B=f js0d is the phase of thej th

oscillator at the beginning of the stimulation,f1
E is the phase of

oscillator 1 at the end of the stimulation,f2
R=f2str

s2dd is the phase
of oscillator 2 at a time during its reset[tcl

s2d=0.87, see(f)].
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Note, for each oscillator the CT standard deviation
(modulo 1) of the phasesf jst+tkd of all responsesk
=1, . . . ,l is constant in time[Figs. 11(a) and 11(b)]. Further-
more, the phase differencew1,1st+tkd of all responsesk
=1, . . . ,l is constant in timet [Fig. 11(c)]. Accordingly,
quantities measuring the extent of the stimulus locking of the

responses of each single oscillator as well as their interde-
pendence have to be constant, too.

Univariate measures. According to their definition, the re-
setting indicesr1 and r2 from Eq. (20) are invariant with
respect to phase shifts of the CT distributionhf jst
+tkdjk=1,. . .,l and, thus, constant for all timestP f0,1g [Figs.
11(d) and 11(e)].

In contrast, the entropy based stimulus locking indicesm1
andm2 from Eq. (25) display oscillations that are due to the
binning of the CT distributions. The binning is necessary for
the calculation of the entropy. However, such oscillations
occur predominantly for sharp CT distributions(i.e., for «
=0.001, blue line) [Figs. 11(g) and 11(h)].

TheP values of the CT Kolmogorov-Smirnov test display
an artificial oscillation with period 1, i.e., with the same pe-
riod as the oscillation under study[Figs. 11(j) and 11(k)].
This oscillation is strongest for sharp CT distributions(«
=0.001, blue line), but it is also present for smooth CT dis-
tributions(«=1, green line). The oscillation of theP value of
the CT Kolmogorov-Smirnov test is caused by an oscillation
of D, the maximum value of the absolute difference between
the two cumulative distribution functions from Eq.(32) (not
shown due to space constraints). By the way, the artificial
oscillations of theP values of the CT Kolmogorov-Smirnov
test are also observed when applying this method to signals
generated by the model from Eqs.(3) and(4) [Figs. 8(e) and
8(m) and discussions in Sec. VII E].

In contrast, theP values of the CT Kuiper test are invari-
ant with respect to a phase shift of the CT distribution of the
phase. Consequently, theP values of the CT Kuiper test are
constant for all timestP f0,1g [Figs. 11(m) and 11(n)]. Con-
sequently, also when applied to numerical signals stemming
from Eqs.(3) and (4), the CT Kuiper test produces no arti-
ficial oscillations[Figs. 8(d) and 8(l)].

By definition, the CT averaged signalsx̄1 andx̄2 from Eq.
(1) oscillate and run through one period while the CT distri-
bution of the phase is shifted through one period[Figs. 11(p)
and 11(q)].

The CT standard deviation% j from Eq. (41) is (nearly)
constant in time only for nearly vanishing variance of the
responses, i.e., for« close to 0[Figs. 11(s) and 11(t), blue
lines]. On the contrary, for larger values of« one observes an
artificial oscillation of% j with a period ofT/2, whereT=1 is
the period of the synthetic oscillators. This oscillation occurs
independently of the choice ofDf from Eq. (53). The CT
standard deviation% j attains its greatest values at times when
the corresponding CT averaged signalx̄j is close to zero
crossings. The artificial oscillations of% j are also observed in
numerical simulations of Eqs.(3) and (4) [Figs. 7(b) and
7(d)].

Bivariate measures. As already mentioned, the phase dif-
ferencew1,1st+tkd of all responsesk=1, . . . ,l remains con-
stant in timet. Consequently,hw1,1st+tkdjk=1,. . .,l, the CT dis-
tribution of the 1:1 phase difference from Eq.(17), is
constant in time, too. Therefore, the 1:1 synchronization in-
dex s1,1 from Eq. (19) [Fig. 11(f)], the entropy based 1:1
synchronization indexh1,1 from Eq. (26) [Fig. 11(i)], the P
value from Eq.(36) of the CT Kolmogorov-Smirnov test for
the CT distribution of the 1:1 phase difference[Fig. 11(l)],

FIG. 10. A strong stimulusSsc1d= I coss2c1d from Eq. (3)
causes an antiphase CT response clustering of oscillator 1, which by
transmission via the 1:1 coupling causes an antiphase CT response
clustering of oscillator 2. CT distributions from Eq.(17): hf1st
+tkdjk=1,. . .,l in (a), hf2st+tkdjk=1,. . .,l in (e), and hw1,1st+tkdjk=1,. . .,l

in (i) (0 is black and maximal values are white). Indices from Eqs.
(19)–(21): r1 in (b), a1 in (c), r2 in (f), a2 in (g), ands1,1 in (j). CT
averaged signals from Eq.(1): x̄1 in (d) and x̄2 in (h). Same format
as in Fig. 2. Prestimulus time window used for calculating the sig-
nificance levels:fta,0f=f−8,0f. Parameters of Eqs.(3) and (4): K
=3.5,n=1, m=1, v1/ s2pd=1.5,v2/ s2pd=1.49,D=1, I =40, u=0,
twin=16 [see Eq.(16)], stimulus duration =0.15, and number of
stimuli l =200. Results are stable with respect to variations ofl
between 50 and 2000 and more.
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and theP value from Eq.(40) of the CT Kuiper test for the
CT distribution of the 1:1 phase difference[Fig. 11(o)] are
constant for all timestP f0,1g. Note, for time varying CT
distributions of the 1:1 phase differenceh1,1 and theP value
of the CT Kolmogorov-Smirnov test for the CT distribution
of the 1:1 phase difference produce the same artificial oscil-
lations as in the case of the univariate analysis explained
above.

Although the CT distribution of the 1:1 phase difference
remains constant in time, the CTCC,C from Eq. (42) [Fig.

11(r)], and the CTSCC,S from Eq.(43) [Fig. 11(u)], of these
synthetic stimulus-locked responses “artificially” oscillate
with increasing timet, i.e., with increasing phasesf j al-
though the phase differencewn,m remains constant. These
oscillations occur for all values of the phase differenceDf.
For «=0 [blue lines in Figs. 11(r) and 11(u)], C andSare =1
or =−1 if the signalsx1=coss2pf1d andx2 have the same or
different sign, respectively.C and S vanish whenx1 and x2
have zero crossings. A constant gitter of the phases[«.0,
red and green lines in Figs. 11(r) and 11(u)] smoothens the

FIG. 11.(Color) To demonstrate the phase dependence of particular CT data analysis techniques, the CT methods from Secs. III and IV
are applied to noise-free, idealized responses, defined by Eqs.(52) and(53). These artificial responses are not generated by the model from
Eqs.(3) and(4). Rather, by definition they are given byf1st+tkd=ft+«j1,kg mod 1 andf2st+tkd=ft+Df+«j2,kg mod 1 withDf=0.25 for
k=1, . . . ,l, wherehj j ,kjk=1

l is constant and normally distributed with variance 1, and«=0.01(blue line), 0.1 (red line), 1 (green line). Note,
the period of bothf1 andf2 equals 1. CT distributions from Eq.(17) for «=0.1 are shown as time-dependent histograms off j andw1,1

calculated across trials for each timet relative to stimulus onset within the time windowfta,tbg : hf1st+tkdjk=1,. . .,l in (a), hf2st+tkdjk=1,. . .,l in
(b), andhw1,1st+tkdjk=1,. . .,l in (c) [color scale ranges from dark blue(zero), blue, light blue, green, yellow, orange, red to crimson(maximal
values)]. Resetting indicesr1 and r2 from Eq. (20) in (d) and (e); n:m synchronization indexs1,1 from Eq. (19) in (f); entropy based
stimulus locking indicesm1 andm2 from Eq.(25) in (g) and(h); entropy basedn:m synchronization indexh1,1 from Eq.(26) in (i); base 10
logarithm of theP values of the CT Kolmogorov-Smirnov test for randomness: log10sb1d and log10sb2d from Eq.(35) for the CT distribution
of the phases in(j) and(k); log10sBn,md from Eq. (36) for the CT distribution of then:m phase difference in(l); base 10 logarithm of theP
values of the CT Kuiper test for randomness: log10sp1d and log10sp2d from Eq. (39) for the CT distribution of the phases in(m) and (n);
log10sPn,md from Eq. (40) for the CT distribution of then:m phase difference in(o); CT averaged signalsx̄1 and x̄2 from Eq. (1) in (p) and
(q), CT cross correlationC from Eq.(42) in (r), CT standard deviations%1 and%2 from Eq.(41) in (s) and(t), and CT sign cross correlation
S from Eq. (43) in (u).
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changes ofC andS around the zero crossings, so that oscil-
lations with twice the oscillators’ frequency occur—although
the phase differencewn,m of all pairs of responses is constant.
CTSCC and CTCC nearly coincide. Applied to signals stem-
ming from simulations of the model given by Eqs.(3) and
(4), the time courses of both CTCC and CTSCC are practi-
cally the same(not shown due to space constraints). In par-
ticular, CTSCC is not superior to CTCC with respect to the
artificial oscillations that are not related to stimulus-locked
synchronization.

XI. DISCUSSION

In this paper, I have presented a model which allows one
to study basic transmission properties of stimulus-locked re-
sponses in two coupled phase oscillators, where only one
oscillator is stimulated. Furthermore, I have explained how
to detect such dynamics reliably with data analysis tech-
niques based on stochastic phase resetting(Sec. III). The
major results are the following.

(a) In 1:1 coupled phase oscillators the transmission
time of the CT averaged responses, i.e., the difference in
time between the maxima of the CT averaged responses of
both oscillators, directly corresponds to the phase difference
in the stable synchronized state given by Eq.(13) with inte-
ger multiples of the oscillators’ mean period added to it,
where the integer value of added periods depends on the
coupling strength(Fig. 3, Sec. V). Thus, the transmission
time of the averaged responses primarily corresponds to fea-
tures of the coupling mechanism and the detuning. In par-
ticular, the transmission time of the CT averaged responses is
not a quantity that reflects the time elapsing due to the stimu-
lus’ action being transmitted between the two oscillators.
This contradicts the assumption used in the evoked response
literature[6,10,11,26]. In contrast, with the stochastic phase
resetting analysis from Sec. III[see Eq.(44)] the transmis-
sion time of the stimulus-locked responses is reliably as-
sessed by detecting the time passing by between the maximal
resets of both oscillators. In general, forn:m coupling the
transmission time is determined by detecting the time elaps-
ing between the maximal response events of both oscillators,
e.g., the maximal reset of oscillator 1 and the maximal CT
response clustering of oscillator 2[see Eq.(50) in Sec.
VII A ].

(b) n:m coupling is common in the nervous system.
For instance, there are several interacting brain rhythms such
asa rhythm (around 10 Hz) andb rhythm (around 20 Hz),
which have ann:m relationship of their dominant frequen-
cies, wheren andm are small integers[6,26]. In the model
given by Eqs.(3) and (4), n:m coupling (with nÞ1 and/or
mÞ1 andnÞm) typically leads to a bistability or multista-
bility of stable synchronized states of the two-phase oscilla-
tors (modulo 2p), although a simple in-phase synchronizing
coupling of lowest order is used(see Secs. II B and VI). For
this reason, after stimulation the two oscillators may ap-
proach qualitatively different stable states across trials. Con-
sequently, in twon:m coupled phase oscillators either one or
both oscillators may generate an antiphase CT response clus-
tering, which cannot be detected with the CT averaging from

Eq. (1). Correspondingly, with respect to the standard aver-
aged response, there are three different cases, where CT av-
eraging fails.

(i) Only the directly stimulated oscillator shows an aver-
aged response, and there is no transmission of the averaged
response(Sec. VII). Interestingly, the antiphase CT response
clustering is not only detected with the stochastic phase re-
setting analysis(Fig. 5), but this data analysis approach re-
veals striking similarities between qualitatively different
transmission processes: The normalized transmission time
between the reset of oscillator 1 and the CT response clus-
tering of oscillator 2 from Eq.(50) depends onK in a similar
way as the normalized transmission time of the reset from
Eq. (44) in case of a transmitted reset(compare Figs. 3 and
6).

(ii ) The averaged response is not observed in the directly
stimulated oscillator, but in the oscillator coupled to it(Sec.
VIII ).

(iii ) Neither the directly stimulated nor the other oscilla-
tor displays an averaged response(Sec. IX).

For the study of the transmission time, the coupling
strength was restricted to values up to 15(Figs. 3 and 6).
Given the model parameters used in Figs. 3 and 6, values of
K greater than 15 lead to a very strong synchronization con-
nected with a sharply peaked CT distributionhwn,mst
+tkdjk=1,. . .,l. Sharp distributions of this kind are typically not
observed in biological data, neither under healthy nor under
pathological situations[53,54].

The coupling in Eqs.(3) and(4) is symmetrical. All of the
dynamical phenomena presented in this paper occur also in
the case of nonidentical coupling strength. Obviously, the
only necessary condition is that the oscillator, which is not
stimulated, is coupled to the oscillator, which is stimulated.
Otherwise there is no way for the stimulus’ effect to be trans-
mitted.

By the same token, also for nonsymmetric phase shifts
u1Þu2 instead ofu in the sine coupling terms of Eqs.(3) and
(4), one observes the same dynamical phenomena as pre-
sented in this paper. Also, the data analysis from Sec. III
works for all types of nonsymmetric phase shiftsu1Þu2 as
in the symmetric case. However, there is one special case
occurring for symmetric coupling[as in Eqs.(3) and (4)]
with u1−u2=p modulo 2p. In this case the model equation
reads

ċ1 = v1 − K sinsnc1 − mc2 + u1d + XstdSsc1d + F1std,

s54d

ċ2 = v2 − K sinsmc2 − nc1 − u2d + F2std. s55d

Both couplings have opposite tendencies which, due to the
symmetric coupling strength, remain balanced: No synchro-
nization occurs under spontaneous conditions, i.e., forX=0.
Furthermore, for nonvanishing detuningnv1−mv2 the in-

stantaneous frequencies of both oscillators,ċ1 and ċ2, un-
dergo oscillations. Hence, for nonvanishing detuning the in-
teraction between the two oscillators leads to a frequency
modulation instead of a phase synchronization. In the sim-
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plest case, forn=m=1, pulsatile stimulation of oscillator 1
(as studied in Sec. V) leads to a reset which by transmission
causes a reset of oscillator 2. In general, there is transmission
of the stimulus’ action without synchronization. Since this
phenomenon occurs only for particular parameter values
(symmetric coupling andu1−u2=p modulo 2p), a detailed
description will be presented elsewhere, in order not to over-
load the present paper.

Note, there is a fundamental difference between the con-
cept of stimulus-locked synchronization used in this study on
the one hand and the concept of stationary or quasistationary
stochastic phase synchronization on the other hand. Stochas-
tic phase synchronization refers to processes which are not
transient, but evolve on a long time scale, i.e., for timet
→`. The typical scenario of stochastic phase synchroniza-
tion is given by two self-sustained oscillators without any
pulsatile stimulation. The basic feature of stochastic phase
synchronization is that two oscillators are able to maintain a
stable phase relationship during a long period of time, al-
though they are subject to random forces. Accordingly, sto-
chastic phase synchronization was defined as appearance of
one or more prominent peaks in the distribution of the phase
difference during a sufficiently long observation[55,56].

In contrast, the analysis of stimulus-locked dynamics of
the phase difference(Sec. III) is by no means restricted to the
detection of stimulus-locked phase synchronized states(i.e.,
states, with rather constantn:m phase difference in time plus
possible 2p jumps), which are time locked to the stimulus.
Rather, then:m phase differencewn,m may also undergo
stimulus-locked transients during whichwn,m varies in time.
For instance, during the prestimulus epoch there may be an
in-phase synchronization. The stimulus causes an antiphase
synchronization, which via a branching(two clustering)
comes back to an in-phase synchronization again[28–30].

Using formulas from circular statistics[33], in Sec. III the
CT mean angular deviationL j

s1dstd for a unimodal CT distri-
bution hf jst+tkdjk=1,. . .,l and the CT mean angular deviation
L j

s2dstd for an antiphase bimodal CT distributionhf jst
+tkdjk=1,. . .,l have been introduced as alternatives to the
stimulus locking indicesl j

s1dstd and l j
s2dstd [Eqs. (18), (20),

and(23)]. By the same token, the CT mean angular deviation
Yn,mstd for a unimodal CT distributionhwn,mst+tkdjk=1,. . .,l is
an alternative to then:m synchronization indexsn,mstd [Eqs.
(19) and (24)]. Applied to the signals under consideration,
L j

sndstd and l j
sndstd sn=1,2d as well asYn,mstd and sn,mstd

provide practically the same information, respectively.
In this context it should be mentioned thatl j

s2dstd and
L j

s2dstd share a relevant drawback. Both are not specifically
detecting an antiphase CT clustering. Not only an antiphase
CT clustering[Figs. 5(l) and 5(p)], but also a simple reset
[Figs. 5(c) and 5(g)] is related to significantly large values of
l j

s2dstd and, correspondingly, to significantly small values of
L j

s2dstd. For this reason, the antiphase CT clustering index
a jstd from Eq. (21) has been introduced[29]. a jstd specifi-
cally detects two symmetric antiphase peaks of the distribu-
tion hf jst+tkdjk=1,. . .,l at time t. Only an antiphase CT clus-
tering [Fig. 5(m)]—but not a simple reset[Fig. 5(d)]—is
connected with significantly large values ofa jstd. With a

decrease in symmetry of the antiphase CT clusteringa jstd
decreases[see Fig. 7 in Ref.[29] and Sec. III].

In circular statistics formula for skewness and kurtosis,
i.e., for the third and the fourth moment, of a circular distri-
bution have been derived[33,57]. To introduce mean phases
D j

snd belonging to the stimulus locking indices from Eq.(18),
I rewrite this formula and obtain

l j
sndstdexpfiD j

sndstdg =
1

l
o
k=1

l

expfin2pf jstk + tdg. s56d

With this, the time-dependent skewnesssjstd of the CT
distribution of the normalized phase of oscillatorj , hf jst
+tkdjk=1,. . .,l from Eq. (17), reads

sjstd = l j
s2dstdsin fD j

s2dstd − 2D j
s1dstdg, s57d

Ref. [33]. sjstd vanishes if the CT distributionhf jst
+tkdjk=1,. . .,l is symmetric around its peak at timet.

The time-dependent kurtosiskjstd of the CT distribution
of the normalized phase of oscillatorj , hf jst+tkdjk=1,. . .,l, is
given by

kjstd = l j
s2dstdcosfD j

s2dstd − 2D j
s1dstdg, s58d

Ref. [33]. The kurtosis assesses to what extent a distribution
is relatively flat or sharply peaked. One obtains an alternative
measure for the kurtosis by the replacementkjstd
→kjstd / fL j

s1dstdg3, where the denominator serves to eliminate
possible effects caused by dispersion[57]. L j

s1dstd is the CT
mean angular deviation for a unimodal CT distribution de-
fined by Eq.(23). In a similar way, skewness and kurtosis
can be determined for the CT distribution of then:m phase
difference,hwn,mst+tkdjk=1,. . .,l from Eq. (17).

It is important to note that skewness and kurtosis are
meaningful only for unimodal distributions[33]. The present
study is not focussing on how a stimulus leads to transient
changes of particular features of the shape of unimodal dis-
tributions. Rather, more drastic effect such as transitions be-
tween uniform, unimodal, and multimodal distributions were
studied. For this reason I did not determine skewness and
kurtosis. However, in other numerical or experimental appli-
cations one might profit from these additional measures.

Previously, transient stimulus-locked phase dynamics and
synchronization have been investigated in two-phase oscilla-
tors that were both stimulated, either simultaneously[28,29]
or at different times(with a delay that did not exceed the
time scale of the transients) [30]. Let us compare the results
of these previous studies with the transmission dynamics
found in the present study.

Hallmark of transmission. The maximal response of oscil-
lator 2 in terms of a reset or a CT response clustering comes
after both the maximal response of oscillator 1 and the tran-
sient stimulus-locked desynchronization/synchronization be-
tween the two oscillators, at least for values of the coupling
strengthK that are reasonable from a biological standpoint,
e.g., forK up to, say, 5[Figs. 2 and 3]. In contrast, if both
oscillators are stimulated at the same time, the resets of both
oscillators as well as the transient desynchronization/
synchronization occur at the same time.
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The delayed occurrence of the reset or the CT response
clustering of the not directly stimulated oscillator is an im-
portant criterion for identifying how the action of a stimulus
is transmitted within a network of neuronal oscillators. For
instance, in a recent MEG study this criterion made it pos-
sible to identify which visual brain areas receive direct input
from the retina and which get the input by transmission via
the directly stimulated brain areas[31].

Stochastic resonance. If both oscillators are stimulated ei-
ther at the same or at different times[30], the CT response
clustering may come after a reset. In detuned oscillators this
type of CT response clustering requires the presence of
noise. In fact, by varying the noise amplitude, the extent of
CT response clustering displays a stochastic resonance, i.e.,
the response clustering is strongest for an optimal, interme-
diate noise amplitude[28–30]. In contrast, the dynamical
phenomena presented in this paper are not subject to a sto-
chastic resonance. Rather they occur for vanishing noise, too
(simulations not shown due to space constraints).

Fourier mode based indices vs Shannon entropy based
indices. In case both oscillators were stimulated, the indices
based on the Shannon entropy from Eqs.(25) and(26) were
not sensitive enough to detect CT response clustering,
whereas a reset always leads to an increase of these indices
beyond the prestimulus level(i.e., beyond the 99th percentile
of the corresponding prestimulus CT distribution) [28–30].
In contrast, in the present study it is different: Not only a
reset(Fig. 2), but also a CT two clustering(Fig. 5) as well as
a CT three clustering(Fig. 8) lead to an increase of the
corresponding index beyond its prestimulus level.

In principle, the advantage of the Shannon entropy based
indices would be that different types of responses, such as a
simple reset or different sorts of CT response clustering,
could be detected with only one index for each phase[m j
from Eq. (25)] and one index for the phase difference[hn,m
from Eq. (26)]. In this sense one could use the Shannon
entropy based indices as screening indices. If a response of
whatever kind would be detected with the Shannon entropy
based indices, the Fourier mode based indices from Eqs.
(18)–(22) could be used to specifically identify the type of
response(reset or the particular sort of CT response cluster-
ing). However, since in case of two stimulated oscillators the
Shannon entropy based indices fail in detecting events, and
since in an experimental application it need nota priori be
clear whether there is a transmission or not, the Shannon
entropy based indices should not be used as screening indi-
ces.

The CT Kuiper test as screening test. Unlike the Shannon
entropy based indices, both the CT Kuiper test for random-
ness of the CT distribution of the phasef j from Eq.(39) and
the CT Kuiper test for randomness of the CT distribution of
the n:m phase differencewn,m from Eq. (40) provide robust
screening tests for stimulus locked dynamics of the phase
and then:m phase difference. For the numerical signals un-
der consideration, the CT Kuiper test turned out to be sensi-
tive enough to detect all sorts of resetting, clustering, and
synchronization phenomena considered in this study[Secs.
V B, VII E, and X]. Whenever the poststimulusP values
from Eqs.(39) and(40) leave the prestimulus baseline range
(from the first to the 99th prestimulus percentile), one can

use the resetting indexr j from Eq. (20), the CT response
clustering indicesa j andb j from Eqs.(21) and(22), and the
n:m synchronization indexsn,m from Eq. (19) to determine
the concrete type of resetting, response clustering, synchro-
nization, or desynchronization, respectively. In analogy to
Eqs.(21) and (22), in case ofn equally spaced peaks in the
CT distribution of, e.g., the phasef j, andn.3, one can use
the time-dependent CTn-clustering index of thej th oscilla-
tor defined by l j

sndstd−l j
s1dstd sn=4,5, . . .d. −1øl j

sndstd
−l j

s1dstdø1 is fulfilled for all times t, where n Dirac-like
symmetric and equally spaced peaks are connected with
l j

sndstd−l j
s1dstd=1.

According to the tests performed on synthetic responses
in Sec. X, the CT Kolmogorov-Smirnov test from Eqs.(35)
and(36), the CTCC from Eq.(42) and the CTSCC from Eq.
(43) are no appropriate measures for estimating stimulus-
locked dynamics, since they produce artificial oscillations
that are not related to the stimulus-locked dynamics under
study. When applying the entropy based stimulus locking
index m j from Eq. (25) as well as the entropy based 1:1
synchronization indexh1,1 from Eq. (26), one has to keep in
mind that in case of sharp CT distributions binning-induced
artificial oscillations occur[Figs. 11(g) and 11(h)]. In par-
ticular, in applications to noisy experimental signals, the CT
distributions are typically not sharp, so that the binning may,
hence, cause no problems.

The same artificial oscillations as demonstrated in Sec. X
occur in case of ann:m phase relationship. In other words,
also for n:m synchronization the CT Kolmogorov-Smirnov
test, the CTCC, and the CTSCC produce similar artificial
oscillations that are not related to the stimulus-locked dy-
namics(not shown because of space constraints). Also, the
entropy basedn:m synchronization indexhn,m produces
binning-induced oscillations in case of sharp CT distribu-
tions of then:m phase difference.

Similar to the resetting indexr j from Eq. (20) and the
n:m synchronization indexsn,m from Eq. (19) [Figs.
11(d)–11(f)], also the mean angular deviations from Eqs.
(23) and (24), the antiphase CT clustering index from Eq.
(21), and the CT three-clustering index from Eq.(22) cause
no artificial oscillations. This follows directly from their
definitions.

For the study of phase resetting in EEG signals in sensory
stimulation experiments a quantity has been used which is
comparable to the resetting indexr j from Eq. (20), and
which was based on a wavelet transformation and denoted as
“phase-locking factor”[9,58]. The results presented here as
well as previous findings[28–30] clearly show that one can-
not use only the resetting indexr j from Eq. (20) or only the
antiphase CT clustering indexa j from Eq. (21) as sort of a
screening index. Rather, the CT Kuiper test(Sec. III E)
serves as screening test, at least for the signals analyzed in
this study. As explained above, the CT Kuiper test detects
stimulus-locked epochs, whereas the specific nature of such
an epoch(reset, CT response clustering, synchronization, de-
synchronization) can be detected with the indices from Sec.
III B. Up to now, only reset and antiphase CT response clus-
tering have been found in experimental data[31]. As an al-
ternative, instead of first applying the CT Kuiper test, one
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could start with a visual inspection of the CT distributions
from Eq. (17) and then decide which Fourier based index is
most appropriate. However, such an approach is not feasible
if thousands of signals, e.g., thousands of currents in differ-
ent brain volume elements have to be analyzed(see Ref.
[31]).

CT averaging. Antiphase CT response clustering cannot
be detected with CT averaging from Eq.(1), especially, if it
is close to symmetrical, i.e., if the two antiphase responses
appear with similar frequency across trials. This holds, in
general, and was thus observed not only in the present study,
but also in case of two stimulated oscillators[28–30]. In
other words, more complex types of responses than a simple
reset escape detection with the CT averaging, the standard
analysis tool in medicine and biology.

CT standard deviation. In case both oscillators are stimu-
lated [28–30] as well as only one oscillator is stimulated
[Figs. 7(b) and 7(d)], the CT standard deviation displays an
artificial oscillation with typically twice the frequency of the
analyzed oscillator[Figs. 11(s) and 11(t)]. Accordingly, the
CT standard deviation is not appropriate for the analysis of
stimulus-locked responses.

CT cross correlation. After a reset of both oscillators the
CT cross correlation from Eq.(42) displays artificial oscilla-
tions [28–30] [Fig. 11(r)]. They arise because the CT cross
correlation depends not only on the phase difference, but also
on the phase of each individual oscillator. Here I have dem-
onstrated that the CT cross correlation need not display such
artificial oscillations, provided only one oscillator is reset.
However, also in this case the CT cross correlation is not
able to detect relevant transient phenomena, such as the pro-
nounced stimulus-locked transient desynchronization shown
in Figs. 5(i)–5(k) [cf. Fig. 7(e)]. Thus, CT cross correlation is
not a reliable method for the analysis of transient stimulus-
locked dynamics. Also, the CT sign cross correlation from
Eq. (43) produces the same artifacts as the CT cross correla-
tion [Fig. 11(u)] and is, hence, not reliable, too.

The data analysis from Sec. III can directly be applied to
experimental data. In case of discrete signals such as timing
sequences of spiking neurons the phase can, e.g., be esti-
mated with linear interpolation. In case of continuous experi-

mental data, also the amplitudes of the oscillators have to be
studied. For this, an oscillatory signalxjstd, e.g., a particular
brain rhythm, is extracted out of a measured signal by means
of bandpass filtering. The Hilbert transformxj

Hstd of xjstd
yields instantaneous phasec jstd and instantaneous amplitude
Ajstd of xjstd according toxjstd+xj

Hstd=Ajstdexpfic jstdg [59].
The Hilbert transform is generated by a filter, which causes a
phase shift ofp /2 for all frequencies. Alternatively, also a
wavelet approach can be used for the phase determination
[60]. The amplitudesAj of the oscillators can, in principle, be
averaged across trials as done in Eq.(1) with the signals.
With such an analysis, however, qualitatively different tran-
sients of the amplitudes cannot be detected. It is superior to
check for CT clustering of amplitude responses by use of the
stochastic phase resetting analysis from Sec. III. To this end,
similar to Eq.(17) I introduce CT distributions of the ampli-
tudes withhAjst+tkdjk=1,. . .,l and evaluate them in a compa-
rable way as defined by Eqs.(18) and (19) for the phases.
Obviously, for the phase oscillator model under consider-
ation there was no need for an amplitude analysis, since the
amplitude of a phase oscillator is constant.

One motivation behind the present study is to reveal basic
features of stimulus-locked transient dynamics of two-
coupled oscillators. The other motivation is to contribute to a
more solid basis for analyzing stimulus-locked responses of
interacting brain rhythms as measured, e.g., with EEG and
MEG. Actually, the CT stochastic phase resetting analysis
from Sec. III has allowed to show that brain areas may react
to simple visual stimuli in qualitatively different ways across
trials [31]. This finding illustrates the limitations of the stan-
dard CT analysis techniques(Sec. IV) used in medicine and
neuroscience.
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